function [traj, infStates] = tapas_sutton_k1_binary(r, p, varargin)
% Calculates the trajectories of v under the Rescorla-Wagner learning model
%
% This function can be called in two ways:
%
% (1) tapas_sutton_k1_binary(r, p)
%
% where r is the structure generated by tapas_fitModel and p is the parameter vector in native space;
%
% (2) tapas_sutton_k1_binary(r, ptrans, 'trans')
%
% where r is the structure generated by tapas_fitModel, ptrans is the parameter vector in
% transformed space, and 'trans' is a flag indicating this.
%
% --------------------------------------------------------------------------------------------------
% Copyright (C) 2013 Christoph Mathys, TNU, UZH & ETHZ
%
% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public
% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL
% (either version 3 or, at your option, any later version). For further details, see the file
% COPYING or <http://www.gnu.org/licenses/>.
% Transform paramaters back to their native space if needed
if ~isempty(varargin) && strcmp(varargin{1},'trans');
p = tapas_sutton_k1_binary_transp(r, p);
end
% Unpack parameters
mu = p(1);
Rhat = p(2);
vhat_1 = p(3);
h_1 = p(4);
% Number of trials
u = r.u(:,1);
n = length(u);
% Initialize updated quantities
da = NaN(n,1);
be = NaN(n+1,1);
al = NaN(n,1);
h = NaN(n+1,1);
vhat = NaN(n+1,1);
% Priors
vhat(1) = vhat_1;
be(1) = log(Rhat);
h(1) = h_1;
% Pass through value update loop
for k = 1:n
if not(ismember(k, r.ign))
%%%%%%%%%%%%%%%%%%%%%%
% Effect of input u(k)
%%%%%%%%%%%%%%%%%%%%%%
% Prediction error
da(k) = u(k)-vhat(k);
% Beta
be(k+1) = be(k)+mu*da(k)*h(k);
% Alpha
al(k) = exp(be(k+1))/(Rhat + exp(be(k+1)));
% h
h(k+1) = (h(k)+al(k)*da(k))*max((1-al(k)),0);
% Prediction
vhat(k+1) = vhat(k)+al(k)*da(k);
else
da(k) = 0;
be(k+1) = be(k);
al(k) = al(k-1);
h(k+1) = h(k);
vhat(k+1) = vhat(k);
end
end
% Posterior value
v = vhat;
v(1) = [];
% Remove ends of overlong trajectories
be(end) = [];
h(end) = [];
be(end) = [];
vhat(end) = [];
% Create result data structure
traj = struct;
traj.da = da;
traj.be = be;
traj.al = al;
traj.h = h;
traj.v = v;
traj.vhat = vhat;
% Create matrix (in this case: vector) needed by observation model
infStates = traj.vhat;
return;