TITLE detailed model of glutamate AMPA receptors

COMMENT
-----------------------------------------------------------------------------

	Kinetic model of AMPA receptors
	===============================

	13-state gating model:
	  
         O1    O2    O3    O4
         |     |     |     |
   C0 -- C1 -- C2 -- C3 -- C4
	     |     |     |     |
      	 D1    D2    D3    D4

-----------------------------------------------------------------------------

  Based on voltage-clamp recordings of AMPA receptor-mediated currents in mouse 
  unipolar brush cells (Lu et al., 2017), this  model was fit directly to 
  experimental recordings (by LT in Axograph) in order to obtain the optimal 
  values for the parameters.  
  
  Lu, H.W., Balmer, T.S., Romero, G.E., and Trussell, L.O. (2017) Slow AMPAR 
  Synaptic Transmission Is Determined by Stargazin and Glutamate Transporters. 
  Neuron 96, 73-80 e74.
  
  This AMPA receptor model was originally published in Balmer TS, Borges-Merjane 
  C, Trussell LO (2021) Incomplete removal of extracellular glutamate controls 
  synaptic transmission and integration at a cerebellar synapse. eLife 10:e63819.

-----------------------------------------------------------------------------

  Based on model described in:

  Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  Kinetic models of 
  synaptic transmission.  In: Methods in Neuronal Modeling (2nd edition; 
  edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp. 1-25.


-----------------------------------------------------------------------------
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS AMPA13
	POINTER C
	RANGE C0, C1, C2, C3, C4, D1, D2, D3, D4, O1, O2, O3, O4
	RANGE g, gmax, rb1, rb2, rb3, rb4, Q10_binding, Q10_desensitization, Q10_opening, Q10_unbinding
	GLOBAL Erev
	GLOBAL Rb1, Rb2, Rb3, Rb4, Ru1, Ru2, Ru3, Ru4, Rd1, Rd2, Rd3, Rd4, Rr1, Rr2, Rr3, Rr4, Ro1, Ro2, Ro3, Ro4, Rc1, Rc2, Rc3, Rc4
	GLOBAL vmin, vmax
	NONSPECIFIC_CURRENT i
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(umho) = (micromho)
	(mM) = (milli/liter)
	(uM) = (micro/liter)
}

PARAMETER {
    Q10_binding = 2.4
    Q10_unbinding = 2.4
    Q10_desensitization = 2.4
    Q10_opening = 2.4
    
    celsius       (degC)
	Erev	= 0    (mV)	: reversal potential
	gmax	= 20  (pS)	: maximal conductance of a single channel, the subconductance states are fractions of this, see BREAKPOINT
	vmin = -120	(mV)
	vmax = 100	(mV)
	
: Rates

	Rb1	= 800   (/mM /ms) : binding first site
	Rb2	= 600   (/mM /ms) : binding second site
	Rb3	= 400   (/mM /ms) : binding third site
	Rb4	= 200   (/mM /ms) : binding fourth site

	Ru1	= 30	(/ms)	: unbinding (1st site)
	Ru2	= 40  (/ms): unbinding (2nd site)
	Ru3	= 60	(/ms)	: unbinding (3rd site)	
	Ru4	= 80	(/ms)	: unbinding (4th site)	
	
	Rd1	= .25		(/ms)	: desensitization with 1 bound
	Rd2	= .25		(/ms)	: desensitization with 2 bound
	Rd3	= 1		(/ms)	: desensitization with 3 bound
	Rd4	= 1		(/ms)	: desensitization with 4 bound

	Rr1	= 0.05 (/ms)	: resensitization with 1 bound
	Rr2	= 0.05 (/ms)	: resensitization with 2 bound
	Rr3	= 0.022 (/ms)	: resensitization with 3 bound
	Rr4	= 0.022 (/ms)	: resensitization with 4 bound

	Ro1	= 3	(/ms)	: opening with 1 bound
	Ro2	= 4	(/ms)	: opening with 2 bound   
	Ro3	= 4	(/ms)	: opening with 3 bound    
	Ro4	= 4	(/ms)	: opening with 4 bound    
    
	Rc1	= 1.5	(/ms)	: closing with 1 bound
   	Rc2	= 1	(/ms)	: closing with 2 bound
    Rc3	= 1	(/ms)	: closing with 3 bound
  	Rc4	= 1.5	(/ms)	: closing with 4 bound
}

ASSIGNED {
	v		(mV)		: postsynaptic voltage
	i 		(nA)		: current = g*(v - Erev)
	g 		(pS)		: conductance
	C 		(mM)		: pointer to glutamate concentration

	rb1		(/ms)    : binding first site
	rb2		(/ms)    : binding first site
	rb3		(/ms)    : binding first site
	rb4		(/ms)    : binding first site
    
    Q10b (1)
    Q10u (1)
    Q10dr (1)
    Q10oc (1)
}

STATE {
	: Channel states (all fractions)
	C0		: unbound
	C1		: single glu bound
	C2		: double glu bound
	C3		: 3 glu bound
	C4		: 4 glu bound
 	D1		: single glu bound, desensitized
 	D2		: double glu bound, desensitized
	D3		: 3 glu bound, desensitized
	D4		: 4 glu bound, desensitized
	O1		: open state 1
    O2		: open state 2
    O3		: open state 3
    O4		: open state 4
}

INITIAL {
	C0=1
	C1=0
	C2=0
	C3=0
	C4=0
	D1=0
	D2=0
	D3=0
	D4=0
	O1=0
    O2=0
    O3=0
    O4=0
    
    Q10b = Q10_binding^((celsius-22)/10)
    Q10u = Q10_unbinding^((celsius-22)/10)
    Q10dr = Q10_desensitization^((celsius-22)/10)
    Q10oc = Q10_opening^((celsius-22)/10)
}

BREAKPOINT {
	SOLVE kstates METHOD sparse

	g = gmax * (O4 + 0.75*O3 + 0.5*O2 + 0.25*O1)
	i = (1e-6) * g * (v - Erev)
}

KINETIC kstates {
	
	rb1 = Rb1 * C 
	rb2 = Rb2 * C
    rb3 = Rb3 * C
	rb4 = Rb4 * C
	~ C0 <-> C1	(rb1*Q10b,Ru1*Q10u)
	~ C1 <-> C2	(rb2*Q10b,Ru2*Q10u)
	~ C2 <-> C3	(rb3*Q10b,Ru3*Q10u)
	~ C3 <-> C4	(rb4*Q10b,Ru4*Q10u)
	~ C1 <-> D1	(Rd1*Q10dr,Rr1*Q10dr)
	~ C2 <-> D2	(Rd2*Q10dr,Rr2*Q10dr)
	~ C3 <-> D3	(Rd3*Q10dr,Rr3*Q10dr)
	~ C4 <-> D4	(Rd4*Q10dr,Rr4*Q10dr)
	~ C1 <-> O1	(Ro1*Q10oc,Rc1*Q10oc)
	~ C2 <-> O2	(Ro2*Q10oc,Rc2*Q10oc)
	~ C3 <-> O3	(Ro3*Q10oc,Rc3*Q10oc)
	~ C4 <-> O4	(Ro4*Q10oc,Rc4*Q10oc)

	CONSERVE C0+C1+C2+C3+C4+D1+D2+D3+D4+O1+O2+O3+O4 = 1
}