%% January 17, 2024
%% written by Gabriela Cirtala
%% plots dendritic voltages for different PF numbers
%% calculates PAR for branch15;
%% PF Activation time now corresponds to time 0 clear all
close all
t = 0:0.02:600; % define time step and final simulation time
iter_list =1:75; % define number of simulations considered
nb_syn = [2:2:150]; %define PF synapses and PF step considered
sn='003_001_015_';
vtip_mat = [];
vprox_mat = [];
vsoma_mat=[];
for iter = iter_list
vtip = load([sn num2str(iter,'%03.f') '_001_vbr15_dist.dat']);
vtip_mat=[vtip_mat vtip];
vprox = load([sn num2str(iter,'%03.f') '_001_vbr15_prox.dat']);
vprox_mat=[vprox_mat vprox];
vsoma = load([sn num2str(iter,'%03.f') '_001_vsoma.dat']);
vsoma_mat=[vsoma_mat vsoma];
end
%% Plots Figure 3E: the distal point for branch 15 for different PF numbers
figure(1)
plot(t,vtip_mat(:,5),'Color','[0 0.4470 0.7410]','LineWidth',2.5)
hold on
plot(t,vtip_mat(:,50),'Color','[0.8500 0.3250 0.0980]','LineWidth',2.5)
hold on
plot(t,vtip_mat(:,52),'Color','0.9290 0.6940 0.1250','LineWidth',2.5)
hold on
plot(t,vtip_mat(:,53),'Color','[0.4940 0.1840 0.5560]','LineWidth',2.5)
hold on
plot(t,vtip_mat(:,55),'Color','[0.4660 0.6740 0.1880]','LineWidth',2.5)
hold on
plot(t,vtip_mat(:,60),'Color','[0.3010 0.7450 0.9330]','LineWidth',2.5)
hold on
plot(399,-70,'color','r','Marker','^','Markersize',20,'MarkerFaceColor','r')
set(gca,'FontSize',20)
xlabel('time (ms)')
ylabel('V_{p1} (mV)')
grid on
xlim([389,429])
xticks([389 394 399 404 409 414 419 424 429])
xticklabels({'-10','-5','0','5','10','15','20','25','30'})
ylim([-70,-10])
legend('10PF','100PF','104PF','106PF','110PF','120PF')
hgexport(gcf, 'Figure3E', hgexport('factorystyle'), 'Format', 'png','Resolution','1000')
%% Plots Figure 3F: the proximal point for branch 15 for different PF numbers
figure(2)
plot(t,vprox_mat(:,5),'Color','[0 0.4470 0.7410]','LineWidth',2.5)
hold on
plot(t,vprox_mat(:,50),'Color','[0.8500 0.3250 0.0980]','LineWidth',2.5)
hold on
plot(t,vprox_mat(:,52),'Color','0.9290 0.6940 0.1250','LineWidth',2.5)
hold on
plot(t,vprox_mat(:,53),'Color','[0.4940 0.1840 0.5560]','LineWidth',2.5)
hold on
plot(t,vprox_mat(:,55),'Color','[0.4660 0.6740 0.1880]','LineWidth',2.5)
hold on
plot(t,vprox_mat(:,60),'Color','[0.3010 0.7450 0.9330]','LineWidth',2.5)
hold on
plot(399,-70,'color','r','Marker','^','Markersize',20,'MarkerFaceColor','r')
set(gca,'FontSize',20)
ylim([-70,-10])
xlabel('time (ms)')
ylabel('V_{p2} (mV)')
grid on
xlim([389,429])
xticks([389 394 399 404 409 414 419 424 429])
xticklabels({'-10','-5','0','5','10','15','20','25','30'})
legend('10PF','100PF','104PF','106PF','110PF','120PF')
hgexport(gcf, 'Figure3F', hgexport('factorystyle'), 'Format', 'png','Resolution','1000')
%% Calculate peak amplitude response
V_base = -70;
iter_list = 1:1:75;
counter = 1;
for iter = iter_list
v_peak_vtip(counter) = max(vtip_mat(:,counter))-V_base;
v_peak_vprox(counter) = max(vprox_mat(:,counter))-V_base;
counter = counter+1;
end
% Plots Figure 2D: PAR
figure(3)
plot(nb_syn,v_peak_vtip,'b','Marker','s','Markersize',15,'Linewidth',2)
hold on
plot(nb_syn,v_peak_vprox,'r','Marker','s','Markersize',15,'Linewidth',2)
grid on
hold on
plot(106,10,'color','k','Marker','hexagram','Markersize',20,'MarkerFaceColor','k')
set(gca,'FontSize',20)
xlabel('Number of PF synapses')
ylabel('Peak Amplitude (mV)')
legend('p_1','p_2','Location','SouthEast');
hold off
xlim([0,150])
ylim([10,70])
hgexport(gcf, 'Figure3D', hgexport('factorystyle'), 'Format', 'png','Resolution','1000')
%% Save the data corresponding to 0.8 CaP
save('br15_CAP1.mat','nb_syn','v_peak_vtip','v_peak_vprox')