NEURON {
SUFFIX cdp20N_FD2
USEION ca READ cao, cai, ica WRITE cai
RANGE ica_pmp
GLOBAL vrat, TotalPump
}
DEFINE Nannuli 20
UNITS {
(mol) = (1)
(molar) = (1/liter)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
FARADAY = (faraday) (10000 coulomb)
PI = (pi) (1)
}
PARAMETER {
celsius =34 (degC)
cainull = 45e-6 (mM)
mginull =.59 (mM)
DCa = .233 (um2/ms)
Dbtc = 0.007 (um2/ms)
Ddmnpe = 0.08 (um2/ms)
Dcbd1 = .028 (um2/ms)
Dcbd2 = 0 (um2/ms)
Dpar = .043 (um2/ms)
BTCnull = 0 (mM)
b1 = 5.33 (/ms mM)
b2 = 0.08 (/ms)
DMNPEnull = 0 (mM)
c1 = 5.63 (/ms mM)
c2 = 0.107e-3 (/ms)
CBnull= .08
nf1 =43.5 (/ms mM)
nf2 =3.58e-2 (/ms)
ns1 =5.5 (/ms mM)
ns2 =0.26e-2 (/ms)
PVnull = .04 (mM)
m1 = 1.07e2 (/ms mM)
m2 = 9.5e-4 (/ms)
p1 = 0.8 (/ms mM)
p2 = 2.5e-2 (/ms)
kpmp1 = 3e3 (/mM-ms)
kpmp2 = 1.75e1 (/ms)
kpmp3 = 7.255e1 (/ms)
TotalPump = 1e-15
beta = 1(1) vmax =0.1
Kp = 2.7e-3 (mM)
}
ASSIGNED {
diam (um)
ica (mA/cm2)
ica_pmp (mA/cm2)
parea (um) cai (mM)
mgi (mM)
vrat[Nannuli] (um2)
}
CONSTANT { cao = 2 (mM) }
STATE {
ca[Nannuli] (mM)
mg[Nannuli] (mM) <1e-7>
CB[Nannuli] (mM)
CB_f_ca[Nannuli] (mM)
CB_ca_s[Nannuli] (mM)
CB_ca_ca[Nannuli] (mM)
iCB[Nannuli] (mM)
iCB_f_ca[Nannuli] (mM)
iCB_ca_s[Nannuli] (mM)
iCB_ca_ca[Nannuli] (mM)
PV[Nannuli] (mM)
PV_ca[Nannuli] (mM)
PV_mg[Nannuli] (mM)
pump (mol/cm2) <1e-15>
pumpca (mol/cm2) <1e-15>
}
BREAKPOINT {
SOLVE state METHOD sparse
}
LOCAL factors_done
INITIAL {
if (factors_done == 0) { factors_done = 1 factors() }
FROM i=0 TO Nannuli-1 {
ca[i] = cainull
mg[i] = mginull
CB[i] = 0.8*ssCB( kdf(), kds())
CB_f_ca[i] = 0.8*ssCBfast( kdf(), kds())
CB_ca_s[i] = 0.8*ssCBslow( kdf(), kds())
CB_ca_ca[i] = 0.8*ssCBca( kdf(), kds())
iCB[i] = 0.2*ssCB( kdf(), kds())
iCB_f_ca[i] = 0.2*ssCBfast( kdf(), kds())
iCB_ca_s[i] = 0.2*ssCBslow( kdf(), kds())
iCB_ca_ca[i] = 0.2*ssCBca(kdf(), kds())
PV[i] = ssPV( kdc(), kdm())
PV_ca[i] = ssPVca(kdc(), kdm())
PV_mg[i] = ssPVmg(kdc(), kdm())
}
parea = PI*diam
ica = 0
ica_pmp = 0
pump = TotalPump
pumpca = 0
}
LOCAL radii[Nannuli]
LOCAL frat[Nannuli]
PROCEDURE factors() {
LOCAL r, dr2, dr3
r = diam/2 dr2 = 0.0368 dr3 = (r-dr2)/(Nannuli-1) radii[0] = r
radii[1] = r - dr2
FROM i=2 TO Nannuli-1 {
radii[i] = radii[i-1]- dr3
printf("%f\n",radii[i])
}
vrat[0] = 0
frat[0] = 2*r
FROM i=0 TO Nannuli-2 {
vrat[i] = PI*((radii[i]*radii[i])-(radii[i+1]*radii[i+1]))
}
vrat[Nannuli-1] = PI*radii[Nannuli-1]*radii[Nannuli-1]
FROM i=1 TO Nannuli-1 {
if (i==1) {
frat[i] = 2*PI*radii[i]/(dr2+(dr3/2))
} else if (i>1&&i<(Nannuli-1)) {
frat[i] = 2*PI*radii[i]/dr3
} else if (i==(Nannuli-1)) {
frat[i] = 2*PI*radii[i]/((dr3/2)+radii[i])
}
}
}
LOCAL dsqvol
KINETIC state {
COMPARTMENT i, vrat[i] {ca mg CB CB_f_ca CB_ca_s CB_ca_ca iCB iCB_f_ca iCB_ca_s iCB_ca_ca PV PV_ca PV_mg}
COMPARTMENT (1e10)*parea {pump pumpca}
~ ca[0] << (-ica*PI*diam/(2*FARADAY))
FROM i=0 TO Nannuli-1 {
~ ca[i] << (-beta*vmax*vrat[i]*ca[i] / (ca[i] + kpmp2/kpmp1))
}
FROM i=0 TO Nannuli-2 {
~ ca[i] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])
~ mg[i] <-> mg[i+1] (DCa*frat[i+1], DCa*frat[i+1])
~ CB[i] <-> CB[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ CB_f_ca[i] <-> CB_f_ca[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ CB_ca_s[i] <-> CB_ca_s[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ CB_ca_ca[i] <-> CB_ca_ca[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ PV[i] <-> PV[i+1] (Dpar*frat[i+1], Dpar*frat[i+1])
~ PV_ca[i] <-> PV_ca[i+1] (Dpar*frat[i+1], Dpar*frat[i+1])
~ PV_mg[i] <-> PV_mg[i+1] (Dpar*frat[i+1], Dpar*frat[i+1])
}
FROM i=0 TO Nannuli-1 {
dsqvol = vrat[i]
~ ca[i] + CB[i] <-> CB_ca_s[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + CB[i] <-> CB_f_ca[i] (ns1*dsqvol, ns2*dsqvol)
~ ca[i] + CB_f_ca[i] <-> CB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + CB_ca_s[i] <-> CB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol)
~ ca[i] + iCB[i] <-> iCB_ca_s[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + iCB[i] <-> iCB_f_ca[i] (ns1*dsqvol, ns2*dsqvol)
~ ca[i] + iCB_f_ca[i] <-> iCB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + iCB_ca_s[i] <-> iCB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol)
~ ca[i] + PV[i] <-> PV_ca[i] (m1*dsqvol, m2*dsqvol)
~ mg[i] + PV[i] <-> PV_mg[i] (p1*dsqvol, p2*dsqvol)
}
cai = ca[0]
mgi = mg[0]
}
FUNCTION ssCB( kdf(), kds()) (mM) {
ssCB = CBnull/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBfast( kdf(), kds()) (mM) {
ssCBfast = (CBnull*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBslow( kdf(), kds()) (mM) {
ssCBslow = (CBnull*kdf())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBca(kdf(), kds()) (mM) {
ssCBca = (CBnull*kdf()*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION kdf() (1) {
kdf = (cainull*nf1)/nf2
}
FUNCTION kds() (1) {
kds = (cainull*ns1)/ns2
}
FUNCTION kdc() (1) {
kdc = (cainull*m1)/m2
}
FUNCTION kdm() (1) {
kdm = (mginull*p1)/p2
}
FUNCTION ssPV( kdc(), kdm()) (mM) {
ssPV = PVnull/(1+kdc()+kdm())
}
FUNCTION ssPVca( kdc(), kdm()) (mM) {
ssPVca = (PVnull*kdc)/(1+kdc+kdm)
}
FUNCTION ssPVmg( kdc(), kdm()) (mM) {
ssPVmg = (PVnull*kdm())/(1+kdc()+kdm())
}