TITLE P-type calcium channel
COMMENT
ENDCOMMENT
NEURON {
SUFFIX newCaP
USEION ca READ cai, cao WRITE ica
RANGE pcabar, ica,vshift,kt
GLOBAL minf, taum
GLOBAL monovalConc, monovalPerm
}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(nA) = (nanoamp)
(pA) = (picoamp)
(S) = (siemens)
(nS) = (nanosiemens)
(pS) = (picosiemens)
(um) = (micron)
(molar) = (1/liter)
(mM) = (millimolar)
}
CONSTANT {
q10 = 3
F = 9.6485e4 (coulombs)
R = 8.3145 (joule/kelvin)
cv = 30.5 (mV)
ck = 4.113 (mV)
}
PARAMETER {
v (mV)
celsius (degC)
cai (mM)
cao (mM)
vshift =0
pcabar = 6e-5 (cm/s)
monovalConc = 140 (mM)
monovalPerm = 0
kt=1
}
ASSIGNED {
qt
ica (mA/cm2)
minf
taum (ms)
T (kelvin)
E (volt)
zeta
}
STATE { m }
INITIAL {
qt = q10^((celsius-22 (degC))/10 (degC))
T = kelvinfkt( celsius )
rates(v)
m = minf
}
BREAKPOINT {
SOLVE states METHOD cnexp
ica = (1e3) * pcabar * m * ghk(v, cai, cao, 2)
}
DERIVATIVE states {
rates(v)
m' = (minf-m)/taum
}
FUNCTION ghk( v (mV), ci (mM), co (mM), z ) (coulombs/cm3) {
E = (1e-3) * v
zeta = (z*F*E)/(R*T)
if ( fabs(1-exp(-zeta)) < 1e-6 ) {
ghk = (1e-6) * (z*F) * (ci - co*exp(-zeta)) * (1 + zeta/2)
} else {
ghk = (1e-6) * (z*zeta*F) * (ci - co*exp(-zeta)) / (1-exp(-zeta))
}
}
PROCEDURE rates( v (mV) ) {
minf = 1 / ( 1 + exp(-(v+cv+vshift)/ck) )
taum = (1e3) * taumfkt(v)/qt/kt
}
FUNCTION taumfkt( v (mV) ) (s) {
UNITSOFF
taumfkt = (0.0002 + 0.0007031 * exp(-((v+30+vshift)/14)^2)) UNITSON
}
FUNCTION kelvinfkt( t (degC) ) (kelvin) {
UNITSOFF
kelvinfkt = 273.19 + t
UNITSON
}