TITLE HH channel that includes both a sodium and a delayed rectifier channel
: and accounts for sodium conductance attenuation
: Bartlett Mel-modified Hodgkin - Huxley conductances (after Ojvind et al.)
: Terrence Brannon-added attenuation
: Yiota Poirazi-modified Kdr and Na threshold and time constants
: to make it more stable, 2000, poirazi@LNC.usc.edu
: Used in all BUT somatic and axon sections. The spike threshold is about -50 mV
NEURON {
SUFFIX hha_old
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE gnabar, gkbar, gl, el
RANGE ar2, vhalfs
RANGE inf, fac, tau
RANGE taus
RANGE W
GLOBAL taumin
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER { : parameters that can be entered when function is called in cell-setup
a0r = 0.0003 (ms)
b0r = 0.0003 (ms)
zetar = 12
zetas = 12
gmr = 0.2
ar2 = 1.0 :initialized parameter for location-dependent
:Na-conductance attenuation, "s", (ar=1 -> zero attenuation)
taumin = 3 (ms) :min activation time for "s" attenuation system
vvs = 2 (mV) :slope for "s" attenuation system
vhalfr = -60 (mV) :half potential for "s" attenuation system
W = 0.016 (/mV) :this 1/61.5 mV
: gnabar = 0.2 (mho/cm2) :suggested conductance values
: gkbar = 0.12 (mho/cm2)
: gl = 0.0001 (mho/cm2)
gnabar = 0 (mho/cm2) :initialized conductances
gkbar = 0 (mho/cm2) :actual values set in cell-setup.hoc
gl = 0 (mho/cm2)
ena = 60 (mV) :Na reversal potential (also reset in
ek = -77 (mV) :K reversal potential cell-setup.hoc)
el = -70.0 (mV) :steady state
celsius = 34 (degC)
v (mV)
dt (ms)
}
STATE { : the unknown parameters to be solved in the DEs
m h n s
}
ASSIGNED { : parameters needed to solve DE
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
inf[4]
fac[4]
tau[4]
}
BREAKPOINT {
SOLVE states
ina = gnabar*m*m*h*s*(v - ena) :Sodium current
ik = gkbar*n*n*(v - ek) :Potassium current
il = gl*(v - el) :leak current
}
INITIAL { : initialize the following parameter using states()
states()
s=1
ina = gnabar*m*m*h*s*(v - ena)
ik = gkbar*n*n*(v - ek)
il = gl*(v - el)
}
PROCEDURE calcg() {
mhn(v*1(/mV))
m = m + fac[0]*(inf[0] - m) :Na activation variable
h = h + fac[1]*(inf[1] - h) :Na inactivation variable
n = n + fac[2]*(inf[2] - n) :K activation variable
s = s + fac[3]*(inf[3] - s) :Na attenuation variable
}
PROCEDURE states() { : exact when v held constant
calcg()
VERBATIM
return 0;
ENDVERBATIM
}
FUNCTION varss(v, i) { :steady state values
if (i==0) {
varss = 1 / (1 + exp((v + 40)/(-3))) :Na activation
}
else if (i==1) {
varss = 1 / (1 + exp((v + 45)/(3))) :Na inactivation
}
else if (i==2) {
varss = 1 / (1 + exp((v + 42)/(-2))) :K activation
} else {
:"s" activation system for spike attenuation - Migliore 96 model
varss = alpv(v,vhalfr)
}
}
FUNCTION alpv(v(mV),vh) { :used in "s" activation system infinity calculation
alpv = (1+ar2*exp((v-vh)/vvs))/(1+exp((v-vh)/vvs))
}
FUNCTION alpr(v(mV)) { :used in "s" activation system tau
alpr = exp(1.e-3*zetar*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betr(v(mV)) { :used in "s" activation system tau
betr = exp(1.e-3*zetar*gmr*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION vartau(v, i) { :estimate tau values
LOCAL tmp
if (i==0) {
vartau = 0.05 :Na activation tau
}
else if (i==1) {
vartau = 0.5 :Na inactivation tau
}
else if (i==2) {
vartau = 2.2 :K activation tau
} else {
tmp = betr(v)/(a0r+b0r*alpr(v))
if (tmp<taumin) {tmp=taumin}
VERBATIM
ENDVERBATIM
vartau = tmp :s activation tau
}
}
PROCEDURE mhn(v) {
: TABLE infinity, tau, fac DEPEND dt, celsius FROM -100 TO 100 WITH 200
FROM i=0 TO 3 {
tau[i] = vartau(v,i)
inf[i] = varss(v,i)
fac[i] = (1 - exp(-dt/tau[i]))
}
}