:Reference :Colbert and Pan 2002
NEURON {
SUFFIX NaTa_t
USEION na READ ena WRITE ina
RANGE gNaTa_tbar, gNaTa_t, ina
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gNaTa_tbar = 0.00001 (S/cm2)
shift = 7 (mV)
}
ASSIGNED {
v (mV)
ena (mV)
ina (mA/cm2)
gNaTa_t (S/cm2)
mInf
mTau
mAlpha
mBeta
hInf
hTau
hAlpha
hBeta
}
STATE {
m
h
}
BREAKPOINT {
SOLVE states METHOD cnexp
gNaTa_t = gNaTa_tbar*m*m*m*h
ina = gNaTa_t*(v-ena)
}
DERIVATIVE states {
rates()
m' = (mInf-m)/mTau
h' = (hInf-h)/hTau
}
INITIAL{
rates()
m = mInf
h = hInf
}
PROCEDURE rates(){
LOCAL qt
qt = 2.3^((34-21)/10)
UNITSOFF
if(v == -38 - shift){
v = v+0.0001
}
mAlpha = (0.182 * (v- (-38 - shift)))/(1-(exp(-(v- (-38 - shift))/6)))
mBeta = (0.124 * (-v+ (-38 - shift)))/(1-(exp(-(-v+ (-38 - shift))/6)))
mTau = (1/(mAlpha + mBeta))/qt
mInf = mAlpha/(mAlpha + mBeta)
if(v == -66 - shift){
v = v + 0.0001
}
hAlpha = (-0.015 * (v- (-66 - shift)))/(1-(exp((v- (-66 - shift))/6)))
hBeta = (-0.015 * (-v+ (-66 - shift)))/(1-(exp((-v+ (-66 - shift))/6)))
hTau = (1/(hAlpha + hBeta))/qt
hInf = hAlpha/(hAlpha + hBeta)
UNITSON
}