/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__Gfluct2
#define _nrn_initial _nrn_initial__Gfluct2
#define nrn_cur _nrn_cur__Gfluct2
#define _nrn_current _nrn_current__Gfluct2
#define nrn_jacob _nrn_jacob__Gfluct2
#define nrn_state _nrn_state__Gfluct2
#define _net_receive _net_receive__Gfluct2
#define noiseFromRandom noiseFromRandom__Gfluct2
#define new_seed new_seed__Gfluct2
#define oup oup__Gfluct2
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define E_e _p[0]
#define E_i _p[1]
#define g_e0 _p[2]
#define g_i0 _p[3]
#define std_e _p[4]
#define std_i _p[5]
#define tau_e _p[6]
#define tau_i _p[7]
#define i _p[8]
#define g_e _p[9]
#define g_i _p[10]
#define g_e1 _p[11]
#define g_i1 _p[12]
#define D_e _p[13]
#define D_i _p[14]
#define exp_e _p[15]
#define exp_i _p[16]
#define amp_e _p[17]
#define amp_i _p[18]
#define v _p[19]
#define _g _p[20]
#define _nd_area *_ppvar[0]._pval
#define donotuse *_ppvar[2]._pval
#define _p_donotuse _ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = 2;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static double _hoc_grand();
static double _hoc_noiseFromRandom();
static double _hoc_new_seed();
static double _hoc_oup();
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
"grand", _hoc_grand,
"noiseFromRandom", _hoc_noiseFromRandom,
"new_seed", _hoc_new_seed,
"oup", _hoc_oup,
0, 0
};
#define grand grand_Gfluct2
extern double grand( _threadargsproto_ );
/* declare global and static user variables */
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"E_e", "mV",
"E_i", "mV",
"g_e0", "umho",
"g_i0", "umho",
"std_e", "umho",
"std_i", "umho",
"tau_e", "ms",
"tau_i", "ms",
"i", "nA",
"g_e", "umho",
"g_i", "umho",
"g_e1", "umho",
"g_i1", "umho",
"D_e", "umho umho /ms",
"D_i", "umho umho /ms",
0,0
};
static double delta_t = 1;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
static int _ode_count(int);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"Gfluct2",
"E_e",
"E_i",
"g_e0",
"g_i0",
"std_e",
"std_i",
"tau_e",
"tau_i",
0,
"i",
"g_e",
"g_i",
"g_e1",
"g_i1",
"D_e",
"D_i",
0,
0,
"donotuse",
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 21, _prop);
/*initialize range parameters*/
E_e = 0;
E_i = -75;
g_e0 = 0.0121;
g_i0 = 0.0573;
std_e = 0.003;
std_i = 0.0066;
tau_e = 2.728;
tau_i = 10.49;
}
_prop->param = _p;
_prop->param_size = 21;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _Gfluct_reg() {
int _vectorized = 1;
_initlists();
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 1,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 21, 3);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_dparam_semantics(_mechtype, 2, "pointer");
hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 Gfluct2 /Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/x86_64/Gfluct.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Fluctuating conductances";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int noiseFromRandom(_threadargsproto_);
static int new_seed(_threadargsprotocomma_ double);
static int oup(_threadargsproto_);
static int oup ( _threadargsproto_ ) {
if ( tau_e != 0.0 ) {
g_e1 = exp_e * g_e1 + amp_e * grand ( _threadargs_ ) ;
}
if ( tau_i != 0.0 ) {
g_i1 = exp_i * g_i1 + amp_i * grand ( _threadargs_ ) ;
}
return 0; }
static double _hoc_oup(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = 1.;
oup ( _p, _ppvar, _thread, _nt );
return(_r);
}
static int new_seed ( _threadargsprotocomma_ double _lseed ) {
set_seed ( _lseed ) ;
/*VERBATIM*/
printf("Setting random generator with seed = %g\n", _lseed);
return 0; }
static double _hoc_new_seed(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = 1.;
new_seed ( _p, _ppvar, _thread, _nt, *getarg(1) );
return(_r);
}
/*VERBATIM*/
double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);
double grand ( _threadargsproto_ ) {
double _lgrand;
/*VERBATIM*/
if (_p_donotuse) {
/*
: Supports separate independent but reproducible streams for
: each instance. However, the corresponding hoc Random
: distribution MUST be set to Random.uniform(0,1)
*/
_lgrand = nrn_random_pick(_p_donotuse);
}else{
/* only can be used in main thread */
if (_nt != nrn_threads) {
hoc_execerror("multithread random in InUnif"," only via hoc Random");
}
_lgrand = normrand ( 0.0 , 1.0 ) ;
/*VERBATIM*/
}
return _lgrand;
}
static double _hoc_grand(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = grand ( _p, _ppvar, _thread, _nt );
return(_r);
}
static int noiseFromRandom ( _threadargsproto_ ) {
/*VERBATIM*/
{
void** pv = (void**)(&_p_donotuse);
if (ifarg(1)) {
*pv = nrn_random_arg(1);
}else{
*pv = (void*)0;
}
}
return 0; }
static double _hoc_noiseFromRandom(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = 1.;
noiseFromRandom ( _p, _ppvar, _thread, _nt );
return(_r);
}
static int _ode_count(int _type){ hoc_execerror("Gfluct2", "cannot be used with CVODE"); return 0;}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
{
g_e1 = 0.0 ;
g_i1 = 0.0 ;
if ( tau_e != 0.0 ) {
D_e = 2.0 * std_e * std_e / tau_e ;
exp_e = exp ( - dt / tau_e ) ;
amp_e = std_e * sqrt ( ( 1.0 - exp ( - 2.0 * dt / tau_e ) ) ) ;
}
if ( tau_i != 0.0 ) {
D_i = 2.0 * std_i * std_i / tau_i ;
exp_i = exp ( - dt / tau_i ) ;
amp_i = std_i * sqrt ( ( 1.0 - exp ( - 2.0 * dt / tau_i ) ) ) ;
}
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
if ( tau_e == 0.0 ) {
g_e = std_e * grand ( _threadargs_ ) ;
}
if ( tau_i == 0.0 ) {
g_i = std_i * grand ( _threadargs_ ) ;
}
g_e = g_e0 + g_e1 ;
if ( g_e < 0.0 ) {
g_e = 0.0 ;
}
g_i = g_i0 + g_i1 ;
if ( g_i < 0.0 ) {
g_i = 0.0 ;
}
i = g_e * ( v - E_e ) + g_i * ( v - E_i ) ;
}
_current += i;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
_g *= 1.e2/(_nd_area);
_rhs *= 1.e2/(_nd_area);
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ { oup(_p, _ppvar, _thread, _nt); }
}}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/Gfluct.mod";
static const char* nmodl_file_text =
"TITLE Fluctuating conductances\n"
"\n"
"COMMENT\n"
"-----------------------------------------------------------------------------\n"
"\n"
" Fluctuating conductance model for synaptic bombardment\n"
" ======================================================\n"
"\n"
"THEORY\n"
"\n"
" Synaptic bombardment is represented by a stochastic model containing\n"
" two fluctuating conductances g_e(t) and g_i(t) descibed by:\n"
"\n"
" Isyn = g_e(t) * [V - E_e] + g_i(t) * [V - E_i]\n"
" d g_e / dt = -(g_e - g_e0) / tau_e + sqrt(D_e) * Ft\n"
" d g_i / dt = -(g_i - g_i0) / tau_i + sqrt(D_i) * Ft\n"
"\n"
" where E_e, E_i are the reversal potentials, g_e0, g_i0 are the average\n"
" conductances, tau_e, tau_i are time constants, D_e, D_i are noise diffusion\n"
" coefficients and Ft is a gaussian white noise of unit standard deviation.\n"
"\n"
" g_e and g_i are described by an Ornstein-Uhlenbeck (OU) stochastic process\n"
" where tau_e and tau_i represent the \"correlation\" (if tau_e and tau_i are \n"
" zero, g_e and g_i are white noise). The estimation of OU parameters can\n"
" be made from the power spectrum:\n"
"\n"
" S(w) = 2 * D * tau^2 / (1 + w^2 * tau^2)\n"
"\n"
" and the diffusion coeffient D is estimated from the variance:\n"
"\n"
" D = 2 * sigma^2 / tau\n"
"\n"
"\n"
"NUMERICAL RESOLUTION\n"
"\n"
" The numerical scheme for integration of OU processes takes advantage \n"
" of the fact that these processes are gaussian, which led to an exact\n"
" update rule independent of the time step dt (see Gillespie DT, Am J Phys \n"
" 64: 225, 1996):\n"
"\n"
" x(t+dt) = x(t) * exp(-dt/tau) + A * N(0,1)\n"
"\n"
" where A = sqrt( D*tau/2 * (1-exp(-2*dt/tau)) ) and N(0,1) is a normal\n"
" random number (avg=0, sigma=1)\n"
"\n"
"\n"
"IMPLEMENTATION\n"
"\n"
" This mechanism is implemented as a nonspecific current defined as a\n"
" point process.\n"
"\n"
"\n"
"PARAMETERS\n"
"\n"
" The mechanism takes the following parameters:\n"
"\n"
" E_e = 0 (mV) : reversal potential of excitatory conductance\n"
" E_i = -75 (mV) : reversal potential of inhibitory conductance\n"
"\n"
" g_e0 = 0.0121 (umho) : average excitatory conductance\n"
" g_i0 = 0.0573 (umho) : average inhibitory conductance\n"
"\n"
" std_e = 0.0030 (umho) : standard dev of excitatory conductance\n"
" std_i = 0.0066 (umho) : standard dev of inhibitory conductance\n"
"\n"
" tau_e = 2.728 (ms) : time constant of excitatory conductance\n"
" tau_i = 10.49 (ms) : time constant of inhibitory conductance\n"
"\n"
"\n"
"Gfluct2: conductance cannot be negative\n"
"\n"
"\n"
"REFERENCE\n"
"\n"
" Destexhe, A., Rudolph, M., Fellous, J-M. and Sejnowski, T.J. \n"
" Fluctuating synaptic conductances recreate in-vivo--like activity in\n"
" neocortical neurons. Neuroscience 107: 13-24 (2001).\n"
"\n"
" (electronic copy available at http://cns.iaf.cnrs-gif.fr)\n"
"\n"
"\n"
" A. Destexhe, 1999\n"
"\n"
"-----------------------------------------------------------------------------\n"
"ENDCOMMENT\n"
"\n"
"\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" POINT_PROCESS Gfluct2\n"
" RANGE g_e, g_i, E_e, E_i, g_e0, g_i0, g_e1, g_i1\n"
" RANGE std_e, std_i, tau_e, tau_i, D_e, D_i\n"
" RANGE new_seed\n"
" NONSPECIFIC_CURRENT i\n"
" THREADSAFE\n"
" POINTER donotuse\n"
"}\n"
"\n"
"UNITS {\n"
" (nA) = (nanoamp) \n"
" (mV) = (millivolt)\n"
" (umho) = (micromho)\n"
"}\n"
"\n"
"PARAMETER {\n"
" dt (ms)\n"
"\n"
" E_e = 0 (mV) : reversal potential of excitatory conductance\n"
" E_i = -75 (mV) : reversal potential of inhibitory conductance\n"
"\n"
" g_e0 = 0.0121 (umho) : average excitatory conductance\n"
" g_i0 = 0.0573 (umho) : average inhibitory conductance\n"
"\n"
" std_e = 0.0030 (umho) : standard dev of excitatory conductance\n"
" std_i = 0.0066 (umho) : standard dev of inhibitory conductance\n"
"\n"
" tau_e = 2.728 (ms) : time constant of excitatory conductance\n"
" tau_i = 10.49 (ms) : time constant of inhibitory conductance\n"
"}\n"
"\n"
"ASSIGNED {\n"
" v (mV) : membrane voltage\n"
" i (nA) : fluctuating current\n"
" g_e (umho) : total excitatory conductance\n"
" g_i (umho) : total inhibitory conductance\n"
" g_e1 (umho) : fluctuating excitatory conductance\n"
" g_i1 (umho) : fluctuating inhibitory conductance\n"
" D_e (umho umho /ms) : excitatory diffusion coefficient\n"
" D_i (umho umho /ms) : inhibitory diffusion coefficient\n"
" exp_e\n"
" exp_i\n"
" amp_e (umho)\n"
" amp_i (umho)\n"
" donotuse\n"
"}\n"
"\n"
"INITIAL {\n"
" g_e1 = 0\n"
" g_i1 = 0\n"
" if(tau_e != 0) {\n"
" D_e = 2 * std_e * std_e / tau_e\n"
" exp_e = exp(-dt/tau_e)\n"
" amp_e = std_e * sqrt( (1-exp(-2*dt/tau_e)) )\n"
" }\n"
" if(tau_i != 0) {\n"
" D_i = 2 * std_i * std_i / tau_i\n"
" exp_i = exp(-dt/tau_i)\n"
" amp_i = std_i * sqrt( (1-exp(-2*dt/tau_i)) )\n"
" }\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE oup\n"
" if(tau_e==0) {\n"
" g_e = std_e * grand()\n"
" }\n"
" if(tau_i==0) {\n"
" g_i = std_i * grand()\n"
" }\n"
" g_e = g_e0 + g_e1\n"
" if(g_e < 0) { g_e = 0 }\n"
" g_i = g_i0 + g_i1\n"
" if(g_i < 0) { g_i = 0 }\n"
" i = g_e * (v - E_e) + g_i * (v - E_i)\n"
"}\n"
"\n"
"\n"
"PROCEDURE oup() { : use grand()\n"
" if(tau_e!=0) {\n"
" g_e1 = exp_e * g_e1 + amp_e * grand()\n"
" }\n"
" if(tau_i!=0) {\n"
" g_i1 = exp_i * g_i1 + amp_i * grand()\n"
" }\n"
"}\n"
"\n"
"\n"
"PROCEDURE new_seed(seed) { : procedure to set the seed\n"
" set_seed(seed)\n"
" VERBATIM\n"
" printf(\"Setting random generator with seed = %g\\n\", _lseed);\n"
" ENDVERBATIM\n"
"}\n"
"\n"
"VERBATIM\n"
"double nrn_random_pick(void* r);\n"
"void* nrn_random_arg(int argpos);\n"
"ENDVERBATIM\n"
"\n"
"FUNCTION grand() {\n"
"VERBATIM\n"
" if (_p_donotuse) {\n"
" /*\n"
" : Supports separate independent but reproducible streams for\n"
" : each instance. However, the corresponding hoc Random\n"
" : distribution MUST be set to Random.uniform(0,1)\n"
" */\n"
" _lgrand = nrn_random_pick(_p_donotuse);\n"
" }else{\n"
" /* only can be used in main thread */\n"
" if (_nt != nrn_threads) {\n"
"hoc_execerror(\"multithread random in InUnif\",\" only via hoc Random\");\n"
" }\n"
"ENDVERBATIM\n"
" : the old standby. Cannot use if reproducible parallel sim\n"
" : independent of nhost or which host this instance is on\n"
" : is desired, since each instance on this cpu draws from\n"
" : the same stream\n"
" grand = normrand(0,1)\n"
"VERBATIM\n"
" }\n"
"ENDVERBATIM\n"
"}\n"
"\n"
"PROCEDURE noiseFromRandom() {\n"
"VERBATIM\n"
" {\n"
" void** pv = (void**)(&_p_donotuse);\n"
" if (ifarg(1)) {\n"
" *pv = nrn_random_arg(1);\n"
" }else{\n"
" *pv = (void*)0;\n"
" }\n"
" }\n"
"ENDVERBATIM\n"
"}\n"
"\n"
;
#endif