/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__NMDA
#define _nrn_initial _nrn_initial__NMDA
#define nrn_cur _nrn_cur__NMDA
#define _nrn_current _nrn_current__NMDA
#define nrn_jacob _nrn_jacob__NMDA
#define nrn_state _nrn_state__NMDA
#define _net_receive _net_receive__NMDA 
#define state state__NMDA 
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define n_NMDA _p[0]
#define gama_NMDA _p[1]
#define tau_r_NMDA _p[2]
#define tau_d_NMDA _p[3]
#define Use _p[4]
#define e _p[5]
#define i _p[6]
#define i_NMDA _p[7]
#define g_NMDA _p[8]
#define A_NMDA _p[9]
#define B_NMDA _p[10]
#define factor_NMDA _p[11]
#define DA_NMDA _p[12]
#define DB_NMDA _p[13]
#define v _p[14]
#define _g _p[15]
#define _tsav _p[16]
#define _nd_area  *_ppvar[0]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 /* declaration of user functions */
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern Prop* nrn_point_prop_;
 static int _pointtype;
 static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
 return create_point_process(_pointtype, _ho);
}
 static void _hoc_destroy_pnt();
 static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
 return loc_point_process(_pointtype, _vptr);
}
 static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
 return has_loc_point(_vptr);
}
 static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
 double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata(void* _vptr) { Prop* _prop;
 _prop = ((Point_process*)_vptr)->_prop;
   _setdata(_prop);
 }
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 0,0
};
 static Member_func _member_func[] = {
 "loc", _hoc_loc_pnt,
 "has_loc", _hoc_has_loc,
 "get_loc", _hoc_get_loc_pnt,
 0, 0
};
 /* declare global and static user variables */
 static int _thread1data_inuse = 0;
static double _thread1data[1];
#define _gth 0
#define mggate_NMDA _thread1data[0]
#define mggate _thread[_gth]._pval[0]
#define mg mg_NMDA
 double mg = 1;
#define u0 u0_NMDA
 double u0 = 0;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "mg_NMDA", "mM",
 "n_NMDA", "/mM",
 "gama_NMDA", "/mV",
 "tau_r_NMDA", "ms",
 "tau_d_NMDA", "ms",
 "Use", "1",
 "e", "mV",
 "i", "nA",
 "i_NMDA", "nA",
 "g_NMDA", "uS",
 0,0
};
 static double A_NMDA0 = 0;
 static double B_NMDA0 = 0;
 static double delta_t = 0.01;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "mg_NMDA", &mg_NMDA,
 "mggate_NMDA", &mggate_NMDA,
 "u0_NMDA", &u0_NMDA,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 static void _hoc_destroy_pnt(_vptr) void* _vptr; {
   destroy_point_process(_vptr);
}
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[2]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"NMDA",
 "n_NMDA",
 "gama_NMDA",
 "tau_r_NMDA",
 "tau_d_NMDA",
 "Use",
 "e",
 0,
 "i",
 "i_NMDA",
 "g_NMDA",
 0,
 "A_NMDA",
 "B_NMDA",
 0,
 0};
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
  if (nrn_point_prop_) {
	_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
	_p = nrn_point_prop_->param;
	_ppvar = nrn_point_prop_->dparam;
 }else{
 	_p = nrn_prop_data_alloc(_mechtype, 17, _prop);
 	/*initialize range parameters*/
 	n_NMDA = 0.28011;
 	gama_NMDA = 0.062;
 	tau_r_NMDA = 0.3;
 	tau_d_NMDA = 43;
 	Use = 1;
 	e = 0;
  }
 	_prop->param = _p;
 	_prop->param_size = 17;
  if (!nrn_point_prop_) {
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
  }
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _net_receive(Point_process*, double*, double);
 static void _thread_mem_init(Datum*);
 static void _thread_cleanup(Datum*);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _NMDA_reg() {
	int _vectorized = 1;
  _initlists();
 	_pointtype = point_register_mech(_mechanism,
	 nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
	 hoc_nrnpointerindex, 2,
	 _hoc_create_pnt, _hoc_destroy_pnt, _member_func);
  _extcall_thread = (Datum*)ecalloc(1, sizeof(Datum));
  _thread_mem_init(_extcall_thread);
  _thread1data_inuse = 0;
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 1, _thread_mem_init);
     _nrn_thread_reg(_mechtype, 0, _thread_cleanup);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 17, 3);
  hoc_register_dparam_semantics(_mechtype, 0, "area");
  hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
  hoc_register_dparam_semantics(_mechtype, 2, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 pnt_receive[_mechtype] = _net_receive;
 pnt_receive_size[_mechtype] = 2;
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 NMDA /Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/x86_64/NMDA.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
static int _reset;
static char *modelname = "AMPA and NMDA receptor with presynaptic short-term plasticity ";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[2], _dlist1[2];
 static int state(_threadargsproto_);
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   DA_NMDA = - A_NMDA / tau_r_NMDA ;
   DB_NMDA = - B_NMDA / tau_d_NMDA ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 DA_NMDA = DA_NMDA  / (1. - dt*( ( - 1.0 ) / tau_r_NMDA )) ;
 DB_NMDA = DB_NMDA  / (1. - dt*( ( - 1.0 ) / tau_d_NMDA )) ;
  return 0;
}
 /*END CVODE*/
 static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
    A_NMDA = A_NMDA + (1. - exp(dt*(( - 1.0 ) / tau_r_NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_r_NMDA ) - A_NMDA) ;
    B_NMDA = B_NMDA + (1. - exp(dt*(( - 1.0 ) / tau_d_NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_d_NMDA ) - B_NMDA) ;
   }
  return 0;
}
 
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag; 
{  double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt;   _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
  if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
 _tsav = t; {
   _args[1] = _args[0] ;
     if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = A_NMDA;
    double __primary = (A_NMDA + _args[1] * factor_NMDA) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_r_NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_r_NMDA ) - __primary );
    A_NMDA += __primary;
  } else {
 A_NMDA = A_NMDA + _args[1] * factor_NMDA ;
     }
   if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = B_NMDA;
    double __primary = (B_NMDA + _args[1] * factor_NMDA) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_d_NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_d_NMDA ) - __primary );
    B_NMDA += __primary;
  } else {
 B_NMDA = B_NMDA + _args[1] * factor_NMDA ;
     }
 } }
 
static int _ode_count(int _type){ return 2;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
     _ode_spec1 (_p, _ppvar, _thread, _nt);
 }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 2; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
 _ode_matsol_instance1(_threadargs_);
 }}
 
static void _thread_mem_init(Datum* _thread) {
  if (_thread1data_inuse) {_thread[_gth]._pval = (double*)ecalloc(1, sizeof(double));
 }else{
 _thread[_gth]._pval = _thread1data; _thread1data_inuse = 1;
 }
 }
 
static void _thread_cleanup(Datum* _thread) {
  if (_thread[_gth]._pval == _thread1data) {
   _thread1data_inuse = 0;
  }else{
   free((void*)_thread[_gth]._pval);
  }
 }

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  A_NMDA = A_NMDA0;
  B_NMDA = B_NMDA0;
 {
   double _ltp_NMDA ;
 A_NMDA = 0.0 ;
   B_NMDA = 0.0 ;
   _ltp_NMDA = ( tau_r_NMDA * tau_d_NMDA ) / ( tau_d_NMDA - tau_r_NMDA ) * log ( tau_d_NMDA / tau_r_NMDA ) ;
   factor_NMDA = - exp ( - _ltp_NMDA / tau_r_NMDA ) + exp ( - _ltp_NMDA / tau_d_NMDA ) ;
   factor_NMDA = 1.0 / factor_NMDA ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _tsav = -1e20;
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
 initmodel(_p, _ppvar, _thread, _nt);
}
}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   mggate = 1.0 / ( 1.0 + exp ( gama_NMDA * - ( v ) ) * ( n_NMDA ) ) ;
   g_NMDA = ( B_NMDA - A_NMDA ) * mggate ;
   i_NMDA = g_NMDA * ( v - e ) ;
   i = i_NMDA ;
   }
 _current += i;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
 	}
 _g = (_g - _rhs)/.001;
 _g *=  1.e2/(_nd_area);
 _rhs *= 1.e2/(_nd_area);
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}
 
}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}
 
}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
 {   state(_p, _ppvar, _thread, _nt);
  }}}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(A_NMDA) - _p;  _dlist1[0] = &(DA_NMDA) - _p;
 _slist1[1] = &(B_NMDA) - _p;  _dlist1[1] = &(DB_NMDA) - _p;
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif

#if NMODL_TEXT
static const char* nmodl_filename = "/Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/NMDA.mod";
static const char* nmodl_file_text = 
  "TITLE AMPA and NMDA receptor with presynaptic short-term plasticity \n"
  "\n"
  "\n"
  "COMMENT\n"
  "AMPA and NMDA receptor conductance using a dual-exponential profile\n"
  "presynaptic short-term plasticity based on Fuhrmann et al. 2002\n"
  "Implemented by Srikanth Ramaswamy, Blue Brain Project, July 2009\n"
  "GUY: Removed  plasticity and depression\n"
  "\n"
  "ENDCOMMENT \n"
  "\n"
  "\n"
  "NEURON {\n"
  "\n"
  "        POINT_PROCESS NMDA\n"
  "        RANGE  tau_r_NMDA, tau_d_NMDA,n_NMDA,gama_NMDA\n"
  "        RANGE Use\n"
  "        RANGE i,  i_NMDA,  g_NMDA, e, gmax\n"
  "        NONSPECIFIC_CURRENT i\n"
  "}\n"
  "\n"
  "PARAMETER {\n"
  "\n"
  "    	n_NMDA = 0.28011 (/mM)	\n"
  "    	gama_NMDA = 0.062 (/mV) \n"
  "	   tau_r_NMDA = 0.3   (ms) : dual-exponential conductance profile\n"
  "        tau_d_NMDA = 43     (ms) : IMPORTANT: tau_r < tau_d\n"
  "        Use = 1.0   (1)   : Utilization of synaptic efficacy (just initial values! Use, Dep and Fac are overwritten by BlueBuilder assigned values) \n"
  "\n"
  "        e = 0     (mV)  : AMPA and NMDA reversal potential\n"
  "	    mg = 1   (mM)  : initial concentration of mg2+\n"
  "        mggate\n"
  "    	:gmax = .001 (uS) :1nS weight conversion factor (from nS to uS)\n"
  "    	u0 = 0 :initial value of u, which is the running value of Use\n"
  "}\n"
  "\n"
  "COMMENT\n"
  "The Verbatim block is needed to generate random nos. from a uniform distribution between 0 and 1 \n"
  "for comparison with Pr to decide whether to activate the synapse or not\n"
  "ENDCOMMENT\n"
  "   \n"
  "\n"
  "  \n"
  "\n"
  "ASSIGNED {\n"
  "\n"
  "        v (mV)\n"
  "        i (nA)\n"
  "	i_NMDA (nA)\n"
  "	g_NMDA (uS)\n"
  "	factor_NMDA\n"
  "	\n"
  "}\n"
  "\n"
  "STATE {\n"
  "\n"
  "       \n"
  "	A_NMDA       : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_r_NMDA\n"
  "    B_NMDA       : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_d_NMDA\n"
  "}\n"
  "\n"
  "INITIAL{\n"
  "\n"
  "    LOCAL  tp_NMDA\n"
  "	\n"
  "	A_NMDA = 0\n"
  "	B_NMDA = 0\n"
  "        \n"
  "	tp_NMDA = (tau_r_NMDA*tau_d_NMDA)/(tau_d_NMDA-tau_r_NMDA)*log(tau_d_NMDA/tau_r_NMDA) :time to peak of the conductance\n"
  "        \n"
  "	\n"
  "	\n"
  "	factor_NMDA = -exp(-tp_NMDA/tau_r_NMDA)+exp(-tp_NMDA/tau_d_NMDA) :NMDA Normalization factor - so that when t = tp_NMDA, gsyn = gpeak\n"
  "    factor_NMDA = 1/factor_NMDA\n"
  "   \n"
  "}\n"
  "\n"
  "BREAKPOINT {\n"
  "\n"
  "    SOLVE state METHOD cnexp\n"
  "	mggate = 1 / (1 + exp(gama_NMDA  * -(v)) * (n_NMDA)) :mggate kinetics - Jahr & Stevens 1990\n"
  "	g_NMDA = (B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics\n"
  "       \n"
  "	i_NMDA = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal\n"
  "	i =  i_NMDA\n"
  "}\n"
  "\n"
  "DERIVATIVE state{\n"
  "\n"
  "    \n"
  "	A_NMDA' = -A_NMDA/tau_r_NMDA\n"
  "    B_NMDA' = -B_NMDA/tau_d_NMDA\n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "\n"
  "NET_RECEIVE (weight, weight_NMDA){\n"
  "	\n"
  "	weight_NMDA = weight\n"
  "	\n"
  "\n"
  "     \n"
  "	A_NMDA = A_NMDA + weight_NMDA*factor_NMDA\n"
  "    B_NMDA = B_NMDA + weight_NMDA*factor_NMDA\n"
  "\n"
  "              \n"
  "}\n"
  "\n"
  "\n"
  "\n"
  "\n"
  ;
#endif