/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__NMDA
#define _nrn_initial _nrn_initial__NMDA
#define nrn_cur _nrn_cur__NMDA
#define _nrn_current _nrn_current__NMDA
#define nrn_jacob _nrn_jacob__NMDA
#define nrn_state _nrn_state__NMDA
#define _net_receive _net_receive__NMDA
#define state state__NMDA
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define n_NMDA _p[0]
#define gama_NMDA _p[1]
#define tau_r_NMDA _p[2]
#define tau_d_NMDA _p[3]
#define Use _p[4]
#define e _p[5]
#define i _p[6]
#define i_NMDA _p[7]
#define g_NMDA _p[8]
#define A_NMDA _p[9]
#define B_NMDA _p[10]
#define factor_NMDA _p[11]
#define DA_NMDA _p[12]
#define DB_NMDA _p[13]
#define v _p[14]
#define _g _p[15]
#define _tsav _p[16]
#define _nd_area *_ppvar[0]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
0, 0
};
/* declare global and static user variables */
static int _thread1data_inuse = 0;
static double _thread1data[1];
#define _gth 0
#define mggate_NMDA _thread1data[0]
#define mggate _thread[_gth]._pval[0]
#define mg mg_NMDA
double mg = 1;
#define u0 u0_NMDA
double u0 = 0;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"mg_NMDA", "mM",
"n_NMDA", "/mM",
"gama_NMDA", "/mV",
"tau_r_NMDA", "ms",
"tau_d_NMDA", "ms",
"Use", "1",
"e", "mV",
"i", "nA",
"i_NMDA", "nA",
"g_NMDA", "uS",
0,0
};
static double A_NMDA0 = 0;
static double B_NMDA0 = 0;
static double delta_t = 0.01;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"mg_NMDA", &mg_NMDA,
"mggate_NMDA", &mggate_NMDA,
"u0_NMDA", &u0_NMDA,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[2]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"NMDA",
"n_NMDA",
"gama_NMDA",
"tau_r_NMDA",
"tau_d_NMDA",
"Use",
"e",
0,
"i",
"i_NMDA",
"g_NMDA",
0,
"A_NMDA",
"B_NMDA",
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 17, _prop);
/*initialize range parameters*/
n_NMDA = 0.28011;
gama_NMDA = 0.062;
tau_r_NMDA = 0.3;
tau_d_NMDA = 43;
Use = 1;
e = 0;
}
_prop->param = _p;
_prop->param_size = 17;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _net_receive(Point_process*, double*, double);
static void _thread_mem_init(Datum*);
static void _thread_cleanup(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _NMDA_reg() {
int _vectorized = 1;
_initlists();
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 2,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_extcall_thread = (Datum*)ecalloc(1, sizeof(Datum));
_thread_mem_init(_extcall_thread);
_thread1data_inuse = 0;
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 1, _thread_mem_init);
_nrn_thread_reg(_mechtype, 0, _thread_cleanup);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 17, 3);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_dparam_semantics(_mechtype, 2, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
pnt_receive[_mechtype] = _net_receive;
pnt_receive_size[_mechtype] = 2;
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 NMDA /Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/x86_64/NMDA.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "AMPA and NMDA receptor with presynaptic short-term plasticity ";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int state(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
DA_NMDA = - A_NMDA / tau_r_NMDA ;
DB_NMDA = - B_NMDA / tau_d_NMDA ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
DA_NMDA = DA_NMDA / (1. - dt*( ( - 1.0 ) / tau_r_NMDA )) ;
DB_NMDA = DB_NMDA / (1. - dt*( ( - 1.0 ) / tau_d_NMDA )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
A_NMDA = A_NMDA + (1. - exp(dt*(( - 1.0 ) / tau_r_NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_r_NMDA ) - A_NMDA) ;
B_NMDA = B_NMDA + (1. - exp(dt*(( - 1.0 ) / tau_d_NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_d_NMDA ) - B_NMDA) ;
}
return 0;
}
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag;
{ double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt; _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
_tsav = t; {
_args[1] = _args[0] ;
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = A_NMDA;
double __primary = (A_NMDA + _args[1] * factor_NMDA) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_r_NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_r_NMDA ) - __primary );
A_NMDA += __primary;
} else {
A_NMDA = A_NMDA + _args[1] * factor_NMDA ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = B_NMDA;
double __primary = (B_NMDA + _args[1] * factor_NMDA) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_d_NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_d_NMDA ) - __primary );
B_NMDA += __primary;
} else {
B_NMDA = B_NMDA + _args[1] * factor_NMDA ;
}
} }
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void _thread_mem_init(Datum* _thread) {
if (_thread1data_inuse) {_thread[_gth]._pval = (double*)ecalloc(1, sizeof(double));
}else{
_thread[_gth]._pval = _thread1data; _thread1data_inuse = 1;
}
}
static void _thread_cleanup(Datum* _thread) {
if (_thread[_gth]._pval == _thread1data) {
_thread1data_inuse = 0;
}else{
free((void*)_thread[_gth]._pval);
}
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
A_NMDA = A_NMDA0;
B_NMDA = B_NMDA0;
{
double _ltp_NMDA ;
A_NMDA = 0.0 ;
B_NMDA = 0.0 ;
_ltp_NMDA = ( tau_r_NMDA * tau_d_NMDA ) / ( tau_d_NMDA - tau_r_NMDA ) * log ( tau_d_NMDA / tau_r_NMDA ) ;
factor_NMDA = - exp ( - _ltp_NMDA / tau_r_NMDA ) + exp ( - _ltp_NMDA / tau_d_NMDA ) ;
factor_NMDA = 1.0 / factor_NMDA ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_tsav = -1e20;
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
mggate = 1.0 / ( 1.0 + exp ( gama_NMDA * - ( v ) ) * ( n_NMDA ) ) ;
g_NMDA = ( B_NMDA - A_NMDA ) * mggate ;
i_NMDA = g_NMDA * ( v - e ) ;
i = i_NMDA ;
}
_current += i;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
_g *= 1.e2/(_nd_area);
_rhs *= 1.e2/(_nd_area);
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ state(_p, _ppvar, _thread, _nt);
}}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(A_NMDA) - _p; _dlist1[0] = &(DA_NMDA) - _p;
_slist1[1] = &(B_NMDA) - _p; _dlist1[1] = &(DB_NMDA) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/NMDA.mod";
static const char* nmodl_file_text =
"TITLE AMPA and NMDA receptor with presynaptic short-term plasticity \n"
"\n"
"\n"
"COMMENT\n"
"AMPA and NMDA receptor conductance using a dual-exponential profile\n"
"presynaptic short-term plasticity based on Fuhrmann et al. 2002\n"
"Implemented by Srikanth Ramaswamy, Blue Brain Project, July 2009\n"
"GUY: Removed plasticity and depression\n"
"\n"
"ENDCOMMENT \n"
"\n"
"\n"
"NEURON {\n"
"\n"
" POINT_PROCESS NMDA\n"
" RANGE tau_r_NMDA, tau_d_NMDA,n_NMDA,gama_NMDA\n"
" RANGE Use\n"
" RANGE i, i_NMDA, g_NMDA, e, gmax\n"
" NONSPECIFIC_CURRENT i\n"
"}\n"
"\n"
"PARAMETER {\n"
"\n"
" n_NMDA = 0.28011 (/mM) \n"
" gama_NMDA = 0.062 (/mV) \n"
" tau_r_NMDA = 0.3 (ms) : dual-exponential conductance profile\n"
" tau_d_NMDA = 43 (ms) : IMPORTANT: tau_r < tau_d\n"
" Use = 1.0 (1) : Utilization of synaptic efficacy (just initial values! Use, Dep and Fac are overwritten by BlueBuilder assigned values) \n"
"\n"
" e = 0 (mV) : AMPA and NMDA reversal potential\n"
" mg = 1 (mM) : initial concentration of mg2+\n"
" mggate\n"
" :gmax = .001 (uS) :1nS weight conversion factor (from nS to uS)\n"
" u0 = 0 :initial value of u, which is the running value of Use\n"
"}\n"
"\n"
"COMMENT\n"
"The Verbatim block is needed to generate random nos. from a uniform distribution between 0 and 1 \n"
"for comparison with Pr to decide whether to activate the synapse or not\n"
"ENDCOMMENT\n"
" \n"
"\n"
" \n"
"\n"
"ASSIGNED {\n"
"\n"
" v (mV)\n"
" i (nA)\n"
" i_NMDA (nA)\n"
" g_NMDA (uS)\n"
" factor_NMDA\n"
" \n"
"}\n"
"\n"
"STATE {\n"
"\n"
" \n"
" A_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_r_NMDA\n"
" B_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_d_NMDA\n"
"}\n"
"\n"
"INITIAL{\n"
"\n"
" LOCAL tp_NMDA\n"
" \n"
" A_NMDA = 0\n"
" B_NMDA = 0\n"
" \n"
" tp_NMDA = (tau_r_NMDA*tau_d_NMDA)/(tau_d_NMDA-tau_r_NMDA)*log(tau_d_NMDA/tau_r_NMDA) :time to peak of the conductance\n"
" \n"
" \n"
" \n"
" factor_NMDA = -exp(-tp_NMDA/tau_r_NMDA)+exp(-tp_NMDA/tau_d_NMDA) :NMDA Normalization factor - so that when t = tp_NMDA, gsyn = gpeak\n"
" factor_NMDA = 1/factor_NMDA\n"
" \n"
"}\n"
"\n"
"BREAKPOINT {\n"
"\n"
" SOLVE state METHOD cnexp\n"
" mggate = 1 / (1 + exp(gama_NMDA * -(v)) * (n_NMDA)) :mggate kinetics - Jahr & Stevens 1990\n"
" g_NMDA = (B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics\n"
" \n"
" i_NMDA = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal\n"
" i = i_NMDA\n"
"}\n"
"\n"
"DERIVATIVE state{\n"
"\n"
" \n"
" A_NMDA' = -A_NMDA/tau_r_NMDA\n"
" B_NMDA' = -B_NMDA/tau_d_NMDA\n"
"}\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"NET_RECEIVE (weight, weight_NMDA){\n"
" \n"
" weight_NMDA = weight\n"
" \n"
"\n"
" \n"
" A_NMDA = A_NMDA + weight_NMDA*factor_NMDA\n"
" B_NMDA = B_NMDA + weight_NMDA*factor_NMDA\n"
"\n"
" \n"
"}\n"
"\n"
"\n"
"\n"
"\n"
;
#endif