/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__ProbAMPANMDA
#define _nrn_initial _nrn_initial__ProbAMPANMDA
#define nrn_cur _nrn_cur__ProbAMPANMDA
#define _nrn_current _nrn_current__ProbAMPANMDA
#define nrn_jacob _nrn_jacob__ProbAMPANMDA
#define nrn_state _nrn_state__ProbAMPANMDA
#define _net_receive _net_receive__ProbAMPANMDA
#define setRNG setRNG__ProbAMPANMDA
#define state state__ProbAMPANMDA
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define tau_r_AMPA _p[0]
#define tau_d_AMPA _p[1]
#define tau_r_NMDA _p[2]
#define tau_d_NMDA _p[3]
#define Use _p[4]
#define Dep _p[5]
#define Fac _p[6]
#define e _p[7]
#define gmax _p[8]
#define u0 _p[9]
#define weight_factor_NMDA _p[10]
#define i _p[11]
#define i_AMPA _p[12]
#define i_NMDA _p[13]
#define g_AMPA _p[14]
#define g_NMDA _p[15]
#define A_AMPA _p[16]
#define B_AMPA _p[17]
#define A_NMDA _p[18]
#define B_NMDA _p[19]
#define factor_AMPA _p[20]
#define factor_NMDA _p[21]
#define DA_AMPA _p[22]
#define DB_AMPA _p[23]
#define DA_NMDA _p[24]
#define DB_NMDA _p[25]
#define _g _p[26]
#define _tsav _p[27]
#define _nd_area *_ppvar[0]._pval
#define rng *_ppvar[2]._pval
#define _p_rng _ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = 2;
/* external NEURON variables */
/* declaration of user functions */
static double _hoc_erand();
static double _hoc_setRNG();
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
"erand", _hoc_erand,
"setRNG", _hoc_setRNG,
0, 0
};
#define erand erand_ProbAMPANMDA
extern double erand( );
/* declare global and static user variables */
#define mggate mggate_ProbAMPANMDA
double mggate = 0;
#define mg mg_ProbAMPANMDA
double mg = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"mg_ProbAMPANMDA", "mM",
"tau_r_AMPA", "ms",
"tau_d_AMPA", "ms",
"tau_r_NMDA", "ms",
"tau_d_NMDA", "ms",
"Use", "1",
"Dep", "ms",
"Fac", "ms",
"e", "mV",
"gmax", "uS",
"i", "nA",
"i_AMPA", "nA",
"i_NMDA", "nA",
"g_AMPA", "uS",
"g_NMDA", "uS",
0,0
};
static double A_NMDA0 = 0;
static double A_AMPA0 = 0;
static double B_NMDA0 = 0;
static double B_AMPA0 = 0;
static double delta_t = 0.01;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"mg_ProbAMPANMDA", &mg_ProbAMPANMDA,
"mggate_ProbAMPANMDA", &mggate_ProbAMPANMDA,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"ProbAMPANMDA",
"tau_r_AMPA",
"tau_d_AMPA",
"tau_r_NMDA",
"tau_d_NMDA",
"Use",
"Dep",
"Fac",
"e",
"gmax",
"u0",
"weight_factor_NMDA",
0,
"i",
"i_AMPA",
"i_NMDA",
"g_AMPA",
"g_NMDA",
0,
"A_AMPA",
"B_AMPA",
"A_NMDA",
"B_NMDA",
0,
"rng",
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 28, _prop);
/*initialize range parameters*/
tau_r_AMPA = 0.2;
tau_d_AMPA = 1.7;
tau_r_NMDA = 0.29;
tau_d_NMDA = 43;
Use = 1;
Dep = 100;
Fac = 10;
e = 0;
gmax = 0.001;
u0 = 0;
weight_factor_NMDA = 1;
}
_prop->param = _p;
_prop->param_size = 28;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _net_receive(Point_process*, double*, double);
static void _net_init(Point_process*, double*, double);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _ProbAMPANMDA_reg() {
int _vectorized = 0;
_initlists();
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 0,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 28, 4);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_dparam_semantics(_mechtype, 2, "pointer");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
pnt_receive[_mechtype] = _net_receive;
pnt_receive_init[_mechtype] = _net_init;
pnt_receive_size[_mechtype] = 6;
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 ProbAMPANMDA /Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/x86_64/ProbAMPANMDA.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "AMPA and NMDA receptor with presynaptic short-term plasticity ";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int setRNG();
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[4], _dlist1[4];
static int state(_threadargsproto_);
/*VERBATIM*/
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);
/*CVODE*/
static int _ode_spec1 () {_reset=0;
{
DA_AMPA = - A_AMPA / tau_r_AMPA ;
DB_AMPA = - B_AMPA / tau_d_AMPA ;
DA_NMDA = - A_NMDA / tau_r_NMDA ;
DB_NMDA = - B_NMDA / tau_d_NMDA ;
}
return _reset;
}
static int _ode_matsol1 () {
DA_AMPA = DA_AMPA / (1. - dt*( ( - 1.0 ) / tau_r_AMPA )) ;
DB_AMPA = DB_AMPA / (1. - dt*( ( - 1.0 ) / tau_d_AMPA )) ;
DA_NMDA = DA_NMDA / (1. - dt*( ( - 1.0 ) / tau_r_NMDA )) ;
DB_NMDA = DB_NMDA / (1. - dt*( ( - 1.0 ) / tau_d_NMDA )) ;
return 0;
}
/*END CVODE*/
static int state () {_reset=0;
{
A_AMPA = A_AMPA + (1. - exp(dt*(( - 1.0 ) / tau_r_AMPA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_r_AMPA ) - A_AMPA) ;
B_AMPA = B_AMPA + (1. - exp(dt*(( - 1.0 ) / tau_d_AMPA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_d_AMPA ) - B_AMPA) ;
A_NMDA = A_NMDA + (1. - exp(dt*(( - 1.0 ) / tau_r_NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_r_NMDA ) - A_NMDA) ;
B_NMDA = B_NMDA + (1. - exp(dt*(( - 1.0 ) / tau_d_NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_d_NMDA ) - B_NMDA) ;
}
return 0;
}
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag;
{ _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
_tsav = t; {
if ( Fac > 0.0 ) {
_args[4] = _args[4] * exp ( - ( t - _args[5] ) / Fac ) ;
}
else {
_args[4] = Use ;
}
if ( Fac > 0.0 ) {
_args[4] = _args[4] + Use * ( 1.0 - _args[4] ) ;
}
_args[2] = 1.0 - ( 1.0 - _args[1] ) * exp ( - ( t - _args[5] ) / Dep ) ;
_args[3] = _args[4] * _args[2] ;
_args[2] = _args[2] - _args[4] * _args[2] ;
if ( erand ( _threadargs_ ) < _args[3] ) {
_args[5] = t ;
_args[1] = _args[2] ;
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = A_AMPA;
double __primary = (A_AMPA + _args[0] * factor_AMPA) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_r_AMPA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_r_AMPA ) - __primary );
A_AMPA += __primary;
} else {
A_AMPA = A_AMPA + _args[0] * factor_AMPA ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = B_AMPA;
double __primary = (B_AMPA + _args[0] * factor_AMPA) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_d_AMPA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_d_AMPA ) - __primary );
B_AMPA += __primary;
} else {
B_AMPA = B_AMPA + _args[0] * factor_AMPA ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = A_NMDA;
double __primary = (A_NMDA + _args[0] * weight_factor_NMDA * factor_NMDA) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_r_NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_r_NMDA ) - __primary );
A_NMDA += __primary;
} else {
A_NMDA = A_NMDA + _args[0] * weight_factor_NMDA * factor_NMDA ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = B_NMDA;
double __primary = (B_NMDA + _args[0] * weight_factor_NMDA * factor_NMDA) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_d_NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_d_NMDA ) - __primary );
B_NMDA += __primary;
} else {
B_NMDA = B_NMDA + _args[0] * weight_factor_NMDA * factor_NMDA ;
}
}
} }
static void _net_init(Point_process* _pnt, double* _args, double _lflag) {
_args[1] = 1.0 ;
_args[4] = u0 ;
_args[5] = t ;
}
static int setRNG ( ) {
/*VERBATIM*/
{
/**
* This function takes a NEURON Random object declared in hoc and makes it usable by this mod file.
* Note that this method is taken from Brett paper as used by netstim.hoc and netstim.mod
* which points out that the Random must be in negexp(1) mode
*/
void** pv = (void**)(&_p_rng);
if( ifarg(1)) {
*pv = nrn_random_arg(1);
} else {
*pv = (void*)0;
}
}
return 0; }
static double _hoc_setRNG(void* _vptr) {
double _r;
_hoc_setdata(_vptr);
_r = 1.;
setRNG ( );
return(_r);
}
double erand ( ) {
double _lerand;
/*VERBATIM*/
//FILE *fi;
double value;
if (_p_rng) {
/*
:Supports separate independent but reproducible streams for
: each instance. However, the corresponding hoc Random
: distribution MUST be set to Random.negexp(1)
*/
value = nrn_random_pick(_p_rng);
//fi = fopen("RandomStreamMCellRan4.txt", "w");
//fprintf(fi,"random stream for this simulation = %lf\n",value);
//printf("random stream for this simulation = %lf\n",value);
return value;
}else{
_lerand = exprand ( 1.0 ) ;
/*VERBATIM*/
}
return _lerand;
}
static double _hoc_erand(void* _vptr) {
double _r;
_hoc_setdata(_vptr);
_r = erand ( );
return(_r);
}
static int _ode_count(int _type){ return 4;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 ();
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 4; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 ();
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
A_NMDA = A_NMDA0;
A_AMPA = A_AMPA0;
B_NMDA = B_NMDA0;
B_AMPA = B_AMPA0;
{
double _ltp_AMPA , _ltp_NMDA ;
A_AMPA = 0.0 ;
B_AMPA = 0.0 ;
A_NMDA = 0.0 ;
B_NMDA = 0.0 ;
_ltp_AMPA = ( tau_r_AMPA * tau_d_AMPA ) / ( tau_d_AMPA - tau_r_AMPA ) * log ( tau_d_AMPA / tau_r_AMPA ) ;
_ltp_NMDA = ( tau_r_NMDA * tau_d_NMDA ) / ( tau_d_NMDA - tau_r_NMDA ) * log ( tau_d_NMDA / tau_r_NMDA ) ;
factor_AMPA = - exp ( - _ltp_AMPA / tau_r_AMPA ) + exp ( - _ltp_AMPA / tau_d_AMPA ) ;
factor_AMPA = 1.0 / factor_AMPA ;
factor_NMDA = - exp ( - _ltp_NMDA / tau_r_NMDA ) + exp ( - _ltp_NMDA / tau_d_NMDA ) ;
factor_NMDA = 1.0 / factor_NMDA ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_tsav = -1e20;
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
mggate = 1.0 / ( 1.0 + exp ( 0.062 * - ( v ) ) * ( mg / 3.57 ) ) ;
g_AMPA = gmax * ( B_AMPA - A_AMPA ) ;
g_NMDA = gmax * ( B_NMDA - A_NMDA ) * mggate ;
i_AMPA = g_AMPA * ( v - e ) ;
i_NMDA = g_NMDA * ( v - e ) ;
i = i_AMPA + i_NMDA ;
}
_current += i;
_current += i_AMPA;
_current += i_NMDA;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_v + .001);
{ _rhs = _nrn_current(_v);
}
_g = (_g - _rhs)/.001;
_g *= 1.e2/(_nd_area);
_rhs *= 1.e2/(_nd_area);
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ error = state();
if(error){fprintf(stderr,"at line 102 in file ProbAMPANMDA.mod:\n SOLVE state METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
}}}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(A_AMPA) - _p; _dlist1[0] = &(DA_AMPA) - _p;
_slist1[1] = &(B_AMPA) - _p; _dlist1[1] = &(DB_AMPA) - _p;
_slist1[2] = &(A_NMDA) - _p; _dlist1[2] = &(DA_NMDA) - _p;
_slist1[3] = &(B_NMDA) - _p; _dlist1[3] = &(DB_NMDA) - _p;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/ProbAMPANMDA.mod";
static const char* nmodl_file_text =
"TITLE AMPA and NMDA receptor with presynaptic short-term plasticity \n"
"\n"
"\n"
"COMMENT\n"
"AMPA and NMDA receptor conductance using a dual-exponential profile\n"
"presynaptic short-term plasticity based on Fuhrmann et al. 2002\n"
"Implemented by Srikanth Ramaswamy, Blue Brain Project, July 2009\n"
"Etay: changed weight to be equal for NMDA and AMPA, gmax accessible in Neuron\n"
"Tuomo: allowed different weights for AMPA and NMDA\n"
"\n"
"ENDCOMMENT\n"
"\n"
"\n"
"NEURON {\n"
"\n"
" POINT_PROCESS ProbAMPANMDA \n"
" RANGE tau_r_AMPA, tau_d_AMPA, tau_r_NMDA, tau_d_NMDA\n"
" RANGE Use, u, Dep, Fac, u0, weight_factor_NMDA\n"
" RANGE i, i_AMPA, i_NMDA, g_AMPA, g_NMDA, e, gmax\n"
" NONSPECIFIC_CURRENT i, i_AMPA,i_NMDA\n"
" POINTER rng\n"
"}\n"
"\n"
"PARAMETER {\n"
"\n"
" tau_r_AMPA = 0.2 (ms) : dual-exponential conductance profile\n"
" tau_d_AMPA = 1.7 (ms) : IMPORTANT: tau_r < tau_d\n"
" tau_r_NMDA = 0.29 (ms) : dual-exponential conductance profile\n"
" tau_d_NMDA = 43 (ms) : IMPORTANT: tau_r < tau_d\n"
" Use = 1.0 (1) : Utilization of synaptic efficacy (just initial values! Use, Dep and Fac are overwritten by BlueBuilder assigned values) \n"
" Dep = 100 (ms) : relaxation time constant from depression\n"
" Fac = 10 (ms) : relaxation time constant from facilitation\n"
" e = 0 (mV) : AMPA and NMDA reversal potential\n"
" mg = 1 (mM) : initial concentration of mg2+\n"
" mggate\n"
" gmax = .001 (uS) : weight conversion factor (from nS to uS)\n"
" u0 = 0 :initial value of u, which is the running value of Use\n"
" weight_factor_NMDA = 1\n"
"}\n"
"\n"
"COMMENT\n"
"The Verbatim block is needed to generate random nos. from a uniform distribution between 0 and 1 \n"
"for comparison with Pr to decide whether to activate the synapse or not\n"
"ENDCOMMENT\n"
" \n"
"VERBATIM\n"
"\n"
"#include<stdlib.h>\n"
"#include<stdio.h>\n"
"#include<math.h>\n"
"\n"
"double nrn_random_pick(void* r);\n"
"void* nrn_random_arg(int argpos);\n"
"\n"
"ENDVERBATIM\n"
" \n"
"\n"
"ASSIGNED {\n"
"\n"
" v (mV)\n"
" i (nA)\n"
" i_AMPA (nA)\n"
" i_NMDA (nA)\n"
" g_AMPA (uS)\n"
" g_NMDA (uS)\n"
" factor_AMPA\n"
" factor_NMDA\n"
" rng\n"
"}\n"
"\n"
"STATE {\n"
"\n"
" A_AMPA : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_r_AMPA\n"
" B_AMPA : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_d_AMPA\n"
" A_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_r_NMDA\n"
" B_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_d_NMDA\n"
"}\n"
"\n"
"INITIAL{\n"
"\n"
" LOCAL tp_AMPA, tp_NMDA\n"
" \n"
" A_AMPA = 0\n"
" B_AMPA = 0\n"
" \n"
" A_NMDA = 0\n"
" B_NMDA = 0\n"
" \n"
" tp_AMPA = (tau_r_AMPA*tau_d_AMPA)/(tau_d_AMPA-tau_r_AMPA)*log(tau_d_AMPA/tau_r_AMPA) :time to peak of the conductance\n"
" tp_NMDA = (tau_r_NMDA*tau_d_NMDA)/(tau_d_NMDA-tau_r_NMDA)*log(tau_d_NMDA/tau_r_NMDA) :time to peak of the conductance\n"
" \n"
" factor_AMPA = -exp(-tp_AMPA/tau_r_AMPA)+exp(-tp_AMPA/tau_d_AMPA) :AMPA Normalization factor - so that when t = tp_AMPA, gsyn = gpeak\n"
" factor_AMPA = 1/factor_AMPA\n"
" \n"
" factor_NMDA = -exp(-tp_NMDA/tau_r_NMDA)+exp(-tp_NMDA/tau_d_NMDA) :NMDA Normalization factor - so that when t = tp_NMDA, gsyn = gpeak\n"
" factor_NMDA = 1/factor_NMDA\n"
" \n"
"}\n"
"\n"
"BREAKPOINT {\n"
"\n"
" SOLVE state METHOD cnexp\n"
" mggate = 1 / (1 + exp(0.062 (/mV) * -(v)) * (mg / 3.57 (mM))) :mggate kinetics - Jahr & Stevens 1990\n"
" g_AMPA = gmax*(B_AMPA-A_AMPA) :compute time varying conductance as the difference of state variables B_AMPA and A_AMPA\n"
" g_NMDA = gmax*(B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics\n"
" i_AMPA = g_AMPA*(v-e) :compute the AMPA driving force based on the time varying conductance, membrane potential, and AMPA reversal\n"
" i_NMDA = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal\n"
" i = i_AMPA + i_NMDA\n"
"}\n"
"\n"
"DERIVATIVE state{\n"
"\n"
" A_AMPA' = -A_AMPA/tau_r_AMPA\n"
" B_AMPA' = -B_AMPA/tau_d_AMPA\n"
" A_NMDA' = -A_NMDA/tau_r_NMDA\n"
" B_NMDA' = -B_NMDA/tau_d_NMDA\n"
"}\n"
"\n"
"\n"
"NET_RECEIVE (weight, Pv, Pv_tmp, Pr, u, tsyn (ms)){\n"
" \n"
" :weight_AMPA = weight\n"
" :weight_NMDA = weight*weight_factor_NMDA\n"
" :printf(\"NMDA weight = %g\\n\", weight_NMDA)\n"
"\n"
" INITIAL{\n"
" Pv=1\n"
" u=u0\n"
" tsyn=t\n"
" }\n"
"\n"
" : calc u at event-\n"
" if (Fac > 0) {\n"
" u = u*exp(-(t - tsyn)/Fac) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.\n"
" } else {\n"
" u = Use \n"
" } \n"
" if(Fac > 0){\n"
" u = u + Use*(1-u) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.\n"
" } \n"
"\n"
" \n"
" Pv_tmp = 1 - (1-Pv) * exp(-(t-tsyn)/Dep) :Probability Pv for a vesicle to be available for release, analogous to the pool of synaptic\n"
" :resources available for release in the deterministic model. Eq. 3 in Fuhrmann et al.\n"
" Pr = u * Pv_tmp :Pr is calculated as Pv * u (running value of Use)\n"
" Pv_tmp = Pv_tmp - u * Pv_tmp :update Pv as per Eq. 3 in Fuhrmann et al.\n"
" :printf(\"Pv = %g\\n\", Pv)\n"
" :printf(\"Pr = %g\\n\", Pr)\n"
" \n"
" if (erand() < Pr){\n"
" tsyn = t\n"
" Pv = Pv_tmp\n"
" A_AMPA = A_AMPA + weight*factor_AMPA\n"
" B_AMPA = B_AMPA + weight*factor_AMPA\n"
" A_NMDA = A_NMDA + weight*weight_factor_NMDA*factor_NMDA\n"
" B_NMDA = B_NMDA + weight*weight_factor_NMDA*factor_NMDA\n"
"\n"
" }\n"
"}\n"
"\n"
"PROCEDURE setRNG() {\n"
"VERBATIM\n"
" {\n"
" /**\n"
" * This function takes a NEURON Random object declared in hoc and makes it usable by this mod file.\n"
" * Note that this method is taken from Brett paper as used by netstim.hoc and netstim.mod\n"
" * which points out that the Random must be in negexp(1) mode\n"
" */\n"
" void** pv = (void**)(&_p_rng);\n"
" if( ifarg(1)) {\n"
" *pv = nrn_random_arg(1);\n"
" } else {\n"
" *pv = (void*)0;\n"
" }\n"
" }\n"
"ENDVERBATIM\n"
"}\n"
"\n"
"FUNCTION erand() {\n"
"VERBATIM\n"
" //FILE *fi;\n"
" double value;\n"
" if (_p_rng) {\n"
" /*\n"
" :Supports separate independent but reproducible streams for\n"
" : each instance. However, the corresponding hoc Random\n"
" : distribution MUST be set to Random.negexp(1)\n"
" */\n"
" value = nrn_random_pick(_p_rng);\n"
" //fi = fopen(\"RandomStreamMCellRan4.txt\", \"w\");\n"
" //fprintf(fi,\"random stream for this simulation = %lf\\n\",value);\n"
" //printf(\"random stream for this simulation = %lf\\n\",value);\n"
" return value;\n"
" }else{\n"
"ENDVERBATIM\n"
" : the old standby. Cannot use if reproducible parallel sim\n"
" : independent of nhost or which host this instance is on\n"
" : is desired, since each instance on this cpu draws from\n"
" : the same stream\n"
" erand = exprand(1)\n"
"VERBATIM\n"
" }\n"
"ENDVERBATIM\n"
" :erand = value :This line must have been a mistake in Hay et al.'s code, it would basically set the return value to a non-initialized double value.\n"
" :The reason it sometimes works could be that the memory allocated for the non-initialized happened to contain the random value\n"
" :previously generated (or if _p_rng is always a null pointer). However, here we commented this line out.\n"
"}\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
;
#endif