/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__epsp
#define _nrn_initial _nrn_initial__epsp
#define nrn_cur _nrn_cur__epsp
#define _nrn_current _nrn_current__epsp
#define nrn_jacob _nrn_jacob__epsp
#define nrn_state _nrn_state__epsp
#define _net_receive _net_receive__epsp
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define onset _p[0]
#define tau0 _p[1]
#define tau1 _p[2]
#define imax _p[3]
#define i _p[4]
#define myv _p[5]
#define v _p[6]
#define _g _p[7]
#define _nd_area *_ppvar[0]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static double _hoc_curr();
static double _hoc_myexp();
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
"curr", _hoc_curr,
"myexp", _hoc_myexp,
0, 0
};
#define curr curr_epsp
#define myexp myexp_epsp
extern double curr( _threadargsprotocomma_ double );
extern double myexp( _threadargsprotocomma_ double );
#define _za (_thread[0]._pval + 0)
#define _ztpeak _thread[0]._pval[2]
#define _zadjust _thread[0]._pval[3]
#define _zamp _thread[0]._pval[4]
/* declare global and static user variables */
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"onset", "ms",
"tau0", "ms",
"tau1", "ms",
"imax", "nA",
"i", "nA",
"myv", "mV",
0,0
};
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"epsp",
"onset",
"tau0",
"tau1",
"imax",
0,
"i",
"myv",
0,
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 8, _prop);
/*initialize range parameters*/
onset = 0;
tau0 = 0.2;
tau1 = 3;
imax = 0;
}
_prop->param = _p;
_prop->param_size = 8;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 2, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
static void _thread_mem_init(Datum*);
static void _thread_cleanup(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _epsp_reg() {
int _vectorized = 1;
_initlists();
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 2,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_extcall_thread = (Datum*)ecalloc(1, sizeof(Datum));
_thread_mem_init(_extcall_thread);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 1, _thread_mem_init);
_nrn_thread_reg(_mechtype, 0, _thread_cleanup);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 8, 2);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 epsp /Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/x86_64/epsp.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
/*Top LOCAL _za [ 2 ] */
/*Top LOCAL _ztpeak */
/*Top LOCAL _zadjust */
/*Top LOCAL _zamp */
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
double myexp ( _threadargsprotocomma_ double _lx ) {
double _lmyexp;
if ( _lx < - 100.0 ) {
_lmyexp = 0.0 ;
}
else {
_lmyexp = exp ( _lx ) ;
}
return _lmyexp;
}
static double _hoc_myexp(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = myexp ( _p, _ppvar, _thread, _nt, *getarg(1) );
return(_r);
}
double curr ( _threadargsprotocomma_ double _lx ) {
double _lcurr;
_ztpeak = tau0 * tau1 * log ( tau0 / tau1 ) / ( tau0 - tau1 ) ;
_zadjust = 1.0 / ( ( 1.0 - myexp ( _threadargscomma_ - _ztpeak / tau0 ) ) - ( 1.0 - myexp ( _threadargscomma_ - _ztpeak / tau1 ) ) ) ;
_zamp = _zadjust * imax ;
if ( _lx < onset ) {
_lcurr = 0.0 ;
}
else {
_za [ 0 ] = 1.0 - myexp ( _threadargscomma_ - ( _lx - onset ) / tau0 ) ;
_za [ 1 ] = 1.0 - myexp ( _threadargscomma_ - ( _lx - onset ) / tau1 ) ;
_lcurr = - _zamp * ( _za [ 0 ] - _za [ 1 ] ) ;
}
return _lcurr;
}
static double _hoc_curr(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = curr ( _p, _ppvar, _thread, _nt, *getarg(1) );
return(_r);
}
static void _thread_mem_init(Datum* _thread) {
_thread[0]._pval = (double*)ecalloc(5, sizeof(double));
}
static void _thread_cleanup(Datum* _thread) {
free((void*)(_thread[0]._pval));
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
myv = v ;
i = curr ( _threadargscomma_ t ) ;
}
_current += i;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
_g *= 1.e2/(_nd_area);
_rhs *= 1.e2/(_nd_area);
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/agmccrei/Google Drive/HayLab/Microcircuit/Test_Ih_Integration/mod/epsp.mod";
static const char* nmodl_file_text =
": this model is built-in to neuron with suffix epsp\n"
": Schaefer et al. 2003\n"
"\n"
"COMMENT\n"
"modified from syn2.mod\n"
"injected current with exponential rise and decay current defined by\n"
" i = 0 for t < onset and\n"
" i=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1)))\n"
" for t > onset\n"
"\n"
" compare to experimental current injection:\n"
" i = - amp*(1-exp(-t/t1))*(exp(-t/t2))\n"
"\n"
" -> tau1==t2 tau0 ^-1 = t1^-1 + t2^-1\n"
"ENDCOMMENT\n"
" \n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" POINT_PROCESS epsp\n"
" RANGE onset, tau0, tau1, imax, i, myv\n"
" NONSPECIFIC_CURRENT i\n"
"}\n"
"UNITS {\n"
" (nA) = (nanoamp)\n"
" (mV) = (millivolt)\n"
" (umho) = (micromho)\n"
"}\n"
"\n"
"PARAMETER {\n"
" onset=0 (ms)\n"
" tau0=0.2 (ms)\n"
" tau1=3.0 (ms)\n"
" imax=0 (nA)\n"
" v (mV)\n"
"}\n"
"\n"
"ASSIGNED { i (nA) myv (mV)}\n"
"\n"
"LOCAL a[2]\n"
"LOCAL tpeak\n"
"LOCAL adjust\n"
"LOCAL amp\n"
"\n"
"BREAKPOINT {\n"
" myv = v\n"
" i = curr(t)\n"
"}\n"
"\n"
"FUNCTION myexp(x) {\n"
" if (x < -100) {\n"
" myexp = 0\n"
" }else{\n"
" myexp = exp(x)\n"
" }\n"
"}\n"
"\n"
"FUNCTION curr(x) { \n"
" tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)\n"
" adjust=1/((1-myexp(-tpeak/tau0))-(1-myexp(-tpeak/tau1)))\n"
" amp=adjust*imax\n"
" if (x < onset) {\n"
" curr = 0\n"
" }else{\n"
" a[0]=1-myexp(-(x-onset)/tau0)\n"
" a[1]=1-myexp(-(x-onset)/tau1)\n"
" curr = -amp*(a[0]-a[1])\n"
" }\n"
"}\n"
;
#endif