function [TrialNeurons, cor] = ParseTrials (StimCount, neurons, tstop, SpikeTimes, compareTo, norma)
StimSpace = tstop/ StimCount;
TrialNeurons= zeros(StimCount, neurons);
for i = 1:size(SpikeTimes, 1)
trialNo = ceil(SpikeTimes(i, 2) / StimSpace);
neuronNo = SpikeTimes(i, 1);
if (neuronNo < neurons)
TrialNeurons(trialNo, neuronNo+1) = TrialNeurons(trialNo, neuronNo+1) + 1;
end
end
% TrialNeurons = norma(TrialNeurons);
if (norma >0 )
for n = 1:size(TrialNeurons, 1)
% if (norm(TrialNeurons(n, :)) > 0)
TrialNeurons(n, :) = TrialNeurons(n, :)./ norm( TrialNeurons(n, :));
% else
% TrialNeurons(n, :) = 0.01;
% end
end
end
cor = [];
for t = 1:size(TrialNeurons, 1)
cor(end+1) = dot(TrialNeurons(compareTo, :), TrialNeurons(t, :) );
end
end
function drawSpikeTimes (SpikeTimes)
plot(SpikeTimes(:,2), SpikeTimes(:,1), 'r+', 'MarkerSize', 3);
end
function [TrialNeurons, cor] = ParseTrialsCS (StimCount, neurons, tstop, SpikeTimes, compareTo)
StimSpace = tstop/ StimCount;
TrialNeurons= zeros(StimCount, neurons);
for i = 1:size(SpikeTimes, 1)
trialNo = ceil(SpikeTimes(i, 2) / StimSpace);
kosor = (SpikeTimes(i, 2) / StimSpace) - (trialNo -1);
if (kosor < 0.5)
neuronNo = SpikeTimes(i, 1);
TrialNeurons(trialNo, neuronNo+1) = TrialNeurons(trialNo, neuronNo+1) + 1;
end
end
for n = 1:size(TrialNeurons, 1)
TrialNeurons(n, :) = TrialNeurons(n, :)./ norm( TrialNeurons(n, :));
end
cor = [];
for t = 1:size(TrialNeurons, 1)
cor(end+1) = dot(TrialNeurons(compareTo, :), TrialNeurons(t, :) );
end
end