NEURON {
POINT_PROCESS IZH
NONSPECIFIC_CURRENT vv
RANGE a,b,c,d,e,f,I,vv,thresh, vr, vt, vpeak, aACH, cACH, dACH,alphaShutdown, bACH, ACHshutdown, aMin, aMax, g, vrACH, k, Cap, uinit
}
UNITS {
(mV) = (millivolt)
(nA) = (nanoamp)
(pA) = (picoamp)
(uS) = (microsiemens)
(nS) = (nanosiemens)
}
INITIAL {
u = uinit
net_send(0,1)
}
PARAMETER {
: these are default parameters, if parameters were not set up by the user.
k = 0.0011 (nA/mV2) :(1/mV*megaohm)
a = 0.01 (1/ms)
b = 0.0002 (uS)
c = -65 (mV)
d = .001 (nA)
vpeak= 30 (mV)
vv = 0 (mV)
vr = - 70 (mV)
vt = - 45 (mV)
a_OLM = 0.002
ACH = 1 : Baseline levels of ACh
dACH = 0 (nA) : Determines the direction of the magnitude of ACh effects on the Izhikevitch parameter 'd'
cACH = 0 (mV) : Determines the direction of the magnitude of ACh effects on the Izhikevitch parameter 'c'
vrACH = 0 (mV) : Determines the direction of the magnitude of ACh effects on Cell's resting membrane potential
bACH = 1.25
ACHshutdown = 0 : Takes the value of 1 only for OLM cells to allow the calculation of parameter 'a'
uinit = 0 (nA)
}
STATE { u }
ASSIGNED {
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
vv = -(k*(v - (vr + vrACH * (-1+ ACH) ))*(v - vt) - u)
a_OLM = 0.023*ACH^2 - 0.022*ACH + 0.002 : The parameter 'a' for OLM cells was fit to the polynomial function of ACh of second degree to reproduce the effects described in the paper
}
DERIVATIVE states {
u' = (a_OLM * ACHshutdown + a )*(b*(v - (vr + vrACH * (-1+ ACH) ))-u)
}
NET_RECEIVE (w) {
if (flag == 1) {
WATCH (v>vpeak) 2
} else if (flag == 2) {
net_event(t)
v = c + cACH * (-1+ACH)
u = u+d + dACH * (1-ACH)
}
}