#
# Katri Hituri
#
# Script to simulate open probability of IP3R
# Model of Dawson et al. 2003
#
####
import ip3r_model_dli as model
import steps.rng as srng
import steps.solver as ssolver
import numpy
####
#Concentrations for Ca in cytosol
ca_concs = numpy.array([0.001e-6, 0.003e-6, 0.01e-6, 0.02e-6, 0.05e-6, 0.07e-6, 0.10e-6, 0.15e-6, 0.20e-6, 0.25e-6, \
0.28e-6, 0.30e-6, 0.33e-6, 0.35e-6, 0.36e-6, 0.38e-6, 0.43e-6, 0.50e-6, 1.00e-6, 1.50e-6, 2.00e-6,\
2.50e-6, 5.00e-6, 10.00e-6]) # mol/l
# Solver settings
r = srng.create('mt19937', 1000)
r.initialize(2605)
sim = ssolver.Wmdirect(model.mdl, model.cell, r)
# Number of iterations (defines how many times the model is simulated)
NITER = 1 #5000
tpnt = numpy.arange(0.0, 50.01, 0.01)
# array for simulation results
res = numpy.zeros([ca_concs.size, 2])
print 'Simulating the IP3R model of Dawson et al. 2003.'
for i in xrange(ca_concs.size):
print 'Round', i+1, '/', ca_concs.size
temp_res = numpy.zeros([NITER, tpnt.size])
for j in xrange(NITER):
sim.reset()
sim.setPatchCount('ER_memb', 'R', 1) # number of naive receptor
sim.setCompConc('cyt', 'IP3', 10e-6) # [IP3] = 10 uM
sim.setCompConc('cyt', 'Ca', ca_concs[i])
sim.setCompClamped('cyt', 'Ca', 1)
sim.setCompClamped('cyt', 'IP3', 1)
for t in xrange(tpnt.size):
sim.run(tpnt[t])
o1 = sim.getPatchCount('ER_memb', 'O1')
o2 = sim.getPatchCount('ER_memb', 'O2')
temp_res[j,t] = o1 + o2
temp = numpy.mean(temp_res[:,2501:])
res[i,0] = numpy.mean(temp, 0)
res[i,1] = numpy.std(temp, 0)
numpy.savetxt('ip3r_dli_op_res.dat', res)
numpy.savetxt('ip3r_dli_op_ca_concs.dat', ca_concs)
print res[:,0]