#include <iostream>
#include <algorithm>
#include <vector>
#include <random>
#include <time.h>
#include <omp.h>
#define _USE_MATH_DEFINES
#include <math.h>
using namespace std;
#ifdef WIN32
#define drand48() ((double)rand()/(RAND_MAX));
#endif
double factorial(double no)
{
return ((no == 1 || no == 0) ? 1 : factorial(no - 1) * no);
}
double distribution_max;
struct Synapse{
//indicate if the synapse is excitatory
bool excitatory;
//indices of presynaptic neuron
int row, clm;
//synaptic weight
double weight;
//vector of psps
vector<double> psps;
//glutamate release parameters:
//NRmax: max releasable vesicles, NR: available releasable vesicles
//PR: probability of release of releasable vesicle
//tau: refill time constant
double NRmax;
double NR;
vector <double> PR;
double tau;
};
class Neuron{
//parameters from the MacGregor Neuron Model.
//for details, refer: "A Model for Repetitive Firing in Neurons", MacGregor, R. J. and Oliver, R. M., Kybernetik, 1974.
double Tmem, Tgk, Tth, Th, Th0;
double mTmem, mTgk, mTh, mTCa;
double dcGk, dcCa, Ge, Gi, Gk, GiGeRatio;
double Vr, Ek, Ei, Ee;
double c, CM, CS, B, Ca;
double Te1, Te2, Ti1, Ti2;
int P;
vector<double> Ge_table, Gi_table, firing_Prob, glutamate_Prob;
public:
double E, glutamate, glutamate_pr;
int row, clm, S;
bool excitatory;
Neuron();
int Inhibitory();
int computePotential(vector<Synapse> &preSynapses, double SC, int time);
int glutamateinitialize(vector<Synapse> &preSynapses,Neuron **NeuronLayer);
int glutamaterelease(vector<Synapse> &preSynapses,Neuron **NeuronLayer);
};
Neuron::Neuron(){
//initialize excitatory neurons
Tmem = 25, Tgk = 20, Tth = 10, Th = 0,Th0 = 1;
mTmem = 1/Tmem, mTgk = 1/Tgk, mTh = 1/Tth;
mTCa = 1/270;
dcGk = exp(-mTgk), dcCa = exp(-mTCa);
Ge = 0, Gi = 0, Gk = 1, GiGeRatio = 3;
Vr = -70, Ek = -15, Ei = -15, Ee = 70, E = 0, Th = 0;
c = 0.75, CM = c, CS = 0.0, Ca = 0, B = 20;
//Te1 = 0.3, Te2 = 1.5, Ti1 = 0.3, Ti2 = 1.5;
Te1 = 0.2, Te2 = 5, Ti1 = 0.2, Ti2 = 10;
glutamate = 0;
S = 0, P = 0;
for(int i=0; i< 151; i++){
Ge_table.push_back( (Te1 * Te2 / (Te1 - Te2)) * (exp(-i/Te1) - exp(-i/Te2)) );
Gi_table.push_back( (Ti1 * Ti2 / (Ti1 - Ti2)) * (exp(-i/Ti1) - exp(-i/Ti2)) );
}
for(int i = 1; i <= 100; i++)
firing_Prob.push_back( exp(-1000*(i/100 - 1)*(i/100 - 1)) );
for(int i = 1; i <= 3; i++)
glutamate_Prob.push_back( exp(-1000*(i/4 - 1)*(i/4 - 1)) );
}
int Neuron::Inhibitory(){
//initialize inhibitory neurons
Tmem = 25, Tgk = 10, Tth = 15, Th = 0,Th0 = 1;
mTmem = 1/Tmem, mTgk = 1/Tgk, mTh = 1/Tth;
mTCa = 1/270;
dcGk = exp(-mTgk), dcCa = exp(-mTCa);
Ge = 0, Gi = 0, Gk = 1;
Vr = -70, Ek = -10, Ei = -15, Ee = 70, E = 0, Th = 0;
c = 0.75, CM = c, CS = 0.0, Ca = 0, B = 10;
//Te1 = 0.3, Te2 = 1.5, Ti1 = 0.3, Ti2 = 1.5;
Te1 = 0.2, Te2 = 10, Ti1 = 0.2, Ti2 = 10;
S = 0;
Ge_table.clear();
Gi_table.clear();
for(int i=0; i< 151; i++){
Ge_table.push_back( (Te1 * Te2 / (Te1 - Te2)) * (exp(-i/Te1) - exp(-i/Te2)) );
Gi_table.push_back( (Ti1 * Ti2 / (Ti1 - Ti2)) * (exp(-i/Ti1) - exp(-i/Ti2)) );
}
return 0;
}
int Neuron::computePotential(vector<Synapse> &preSynapses, double SC, int time){
//compute potential of individual neurons
unsigned int i,j;
Ge = 0, Gi = 0, glutamate = 0;
double mean = 0, stddev = 1.0, value, dist;
int prob_Index;
default_random_engine generator;
normal_distribution<double> distribution(mean,stddev);
for(i = 0; i < preSynapses.size(); i++){
//cout << preSynapses[i].psps.size() << " " << time << endl;
dist = sqrt((row - preSynapses[i].row)*(row - preSynapses[i].row) + (clm - preSynapses[i].clm)*(clm - preSynapses[i].clm));
if(dist > 25)
dist = 25;
j = preSynapses[i].psps.size();
while(j >= 150){
preSynapses[i].psps.erase(preSynapses[i].psps.end()-1);
//preSynapses[i].psps.pop_back();
//cout << "psp erase" << i << " " << j << endl;
j = j-1;
}
if(preSynapses[i].excitatory){
for(j = round(dist); j < preSynapses[i].psps.size(); j++){
Ge += Ge_table[j-round(dist)]*preSynapses[i].psps[j];
//to keep track of glutamate vesicles released before the neuron fires
if(preSynapses[i].psps[j])
glutamate += 1;
}
}
else{
for(j = round(dist); j < preSynapses[i].psps.size(); j++){
Gi += Gi_table[j - round(dist)]*preSynapses[i].psps[j];
}
}
/*while(j >= 100){
preSynapses[i].psps.erase(preSynapses[i].psps.end()-1);
//preSynapses[i].psps.pop_back();
//cout << "psp erase" << i << " " << j << endl;
j = j-1;
}*/
}
//if((row == 8) && (clm == 8))
//cout << "Gi-Ge-Gk" << " " << Gi << " " << Ge << " " << Gk << endl;
Gk = exp(-(double)1/Tgk)*Gk + B*S;
Th = exp(-(double)1/Tth)*Th + (1 - exp(-(double)1/Tth))*(Th0+c*E);
//E = exp(-(1+Gk+Ge+Gi)/5)*E + ((1 - exp(-(1+Gk+Ge+Gi)/5))*(SC+Ee*Ge+Ei*Gi+Ek*Gk+distribution(generator)))/(1+Gk+Ge+Gi);
E = exp(-((double)1+Gk+Ge+Gi)/(double)5)*E + (((double)1 - exp(-((double)1+Gk+Ge+Gi)/(double)5))*(SC+(double)7*Ge-(double)1*Gi-(double)1*Gk+distribution(generator)))/((double)1+Gk+Ge+Gi);
//E = exp(-(1+Gk+Ge+GiGeRatio)/25)*E + (1 - exp(-(1+Gk+Ge+GiGeRatio)/25))*(SC+ distribution(generator) + (Ee*Ge+Gi*Ei+Gk*Ek)/(1+Gk+Ge+GiGeRatio));//((Ge * layer->Ee + Gi * layer->Ei + Gk * layer->Ek) / Gtot + (noise + neuron->SC))
if(E < -5)
E = -5;
if(E > 10)
E = 10;
if(S == 1){
if(E < Th)
S = 0;
}
if(S == 0){
/*if((E > Th) && (P < 0)){
S = 1;
P = 3;
}*/
prob_Index = ceil(99*E/Th);
//cout << prob_Index << endl;
if(prob_Index < 0)
prob_Index = 0;
if(prob_Index > 99)
prob_Index = 99;
value = drand48();
if(value < firing_Prob[prob_Index] && P < 0){
S = 1;
P = 4;
//if(excitatory)
//cout << glutamate << endl;
//cout << "E" << " " << E << " " << "Th" << " " << Th << " " << S << endl;
}
}
P = P-1;
/*if(E >= Th && S == 0)
S = 1;
else
S = 0;*/
//if((row == 8) && (clm == 8))
//cout << "E" << " " << E << " " << "Th" << " " << Th << " " << S << endl;
return 0;
}
int Neuron::glutamateinitialize(vector<Synapse> &preSynapses,Neuron **NeuronLayer){
//initialize the number of releasable glutamate vesicles
//the mean and stddev variables determine the initial glutamate distribution parameters
double i, j, k;
double p1, pr, nr;
if(distribution_max == 0)
distribution_max = 1;
//double norm = 1;
//for(i = 0; i < preSynapses.size();i++){
// norm = norm + preSynapses[i].weight * preSynapses[i].weight;
//}
//norm = pow(norm, 0.5);
for(i = 0; i < preSynapses.size();i++){
/*previous code*/
if(preSynapses[i].excitatory){
/*p1 = 1 - exp(-(double)1/(double)2);//(preSynapses[i].tau));
//cout << p1 << endl;
nr = preSynapses[i].NRmax;
//pr = 0;
//preSynapses[i].PR.push_back(pr);
for(j = 1; j <= nr; j++){
pr = 0;
for( k = 1; k < j; k++){
pr = pr + factorial(nr)*(pow(p1,k))*(pow((1 - p1),(nr-k)))/(factorial(k) * factorial(nr - k));
}
//cout << pr << endl;
preSynapses[i].PR.push_back(pr);
}*/
preSynapses[i].NR = preSynapses[i].NRmax*NeuronLayer[preSynapses[i].row][preSynapses[i].clm].glutamate_pr/distribution_max;
if(preSynapses[i].NR >= preSynapses[i].NRmax)
preSynapses[i].NR = preSynapses[i].NRmax;
if(preSynapses[i].NR < 0)
preSynapses[i].NR = 0;
//cout << preSynapses[i].NR << endl;
}
else
continue;
}
//exit(0);
return 0;
}
int Neuron::glutamaterelease(vector<Synapse> &preSynapses,Neuron **NeuronLayer){
int i,j,P_index;
double p1, p2, value, Glu_Rel;
p2 = exp(-(double)1/(double)1);
for(i = 0; i < preSynapses.size();i++){
preSynapses[i].psps.insert(preSynapses[i].psps.begin(),0);
if(preSynapses[i].excitatory){
p1 = exp(-(double)1/(double)5000);//(preSynapses[i].tau);
preSynapses[i].NR = preSynapses[i].NR*p1 + preSynapses[i].NRmax*(1 - p1);
preSynapses[i].tau += 1;
if(preSynapses[i].NR >= preSynapses[i].NRmax)
preSynapses[i].NR = preSynapses[i].NRmax;
if(preSynapses[i].NR < 0)
preSynapses[i].NR = 0;
//activity dependent glutamate release
if(NeuronLayer[preSynapses[i].row][preSynapses[i].clm].S){
value = drand48();
if( value <= 1){//PR[preSynapses[i].tau]){//[(int)round(preSynapses[i].NR)] ){
//glutamate release
Glu_Rel = round(preSynapses[i].NR*p2);
preSynapses[i].NR = preSynapses[i].NR - Glu_Rel;
for(j = 0; j < Glu_Rel; j++){
value = preSynapses[i].weight;
preSynapses[i].psps[0] = value;
if(j != Glu_Rel)
preSynapses[i].psps.insert(preSynapses[i].psps.begin(),0);
}
////cout << "psp add" << " " << value << " " << preSynapses[i].PR[(int)floor(preSynapses[i].NR)] << endl;
//value = preSynapses[i].weight;
////preSynapses[i].psps.insert(preSynapses[i].psps.begin(),value);
//preSynapses[i].psps[0] = value;
//preSynapses[i].NR = preSynapses[i].NR - 1;
preSynapses[i].tau = 0;
if(preSynapses[i].NR < 0)
preSynapses[i].NR = 0;
}
//}
}
//spontaneous release
else{
value = drand48();
if(value < 0.0001){
value = drand48();
if( value <= 1){//PR[preSynapses[i].tau]){//[(int)round(preSynapses[i].NR)] ){
Glu_Rel = round(preSynapses[i].NR*p2);
preSynapses[i].NR = preSynapses[i].NR - Glu_Rel;
for(j = 0; j < Glu_Rel; j++){
value = preSynapses[i].weight;
preSynapses[i].psps[0] = value;
if(j != Glu_Rel)
preSynapses[i].psps.insert(preSynapses[i].psps.begin(),0);
}
//value = preSynapses[i].weight;
////preSynapses[i].psps.insert(preSynapses[i].psps.begin(),value);
//preSynapses[i].psps[0] = value;
//preSynapses[i].NR = preSynapses[i].NR - 1;
preSynapses[i].tau = 0;
if(preSynapses[i].NR < 0)
preSynapses[i].NR = 0;
}
}
}
}
else{
if(NeuronLayer[preSynapses[i].row][preSynapses[i].clm].S){
value = drand48();
if( value < 1){
//GABA release
//cout << "psp add" << " " << value << endl;
value = preSynapses[i].weight;//drand48();
//preSynapses[i].psps.insert(preSynapses[i].psps.begin(),value);
preSynapses[i].psps[0] = value;
}
}
else{
value = drand48();
if( value < 0.001){
//GABA spontaneous release
//cout << "psp add" << " " << value << endl;
//value = preSynapses[i].weight;//drand48();
//preSynapses[i].psps.insert(preSynapses[i].psps.begin(),value);
//preSynapses[i].psps[0] = value;
}
}
}
}
//exit(0);
return 0;
}
class Layer{
int rows, clms;
double **trackGlutamate;
//NeuronLayer is a matrix of neurons
Neuron **NeuronLayer;
//ConnectionMatrix is a matrix of vectors; each vector contains the incoming synapses to the neuron at that location
vector<Synapse> **ConnectionMatrix;
public:
Layer(int row, int clm);
int addNeurons();
int addSynapse(int no_wts);
int stimulateNeurons();
int recordPotential(int iterations);
};
Layer::Layer(int row, int clm){
rows = row;
clms = clm;
trackGlutamate = new double*[row]();
for(int i = 0; i < row; i++)
trackGlutamate[i] = new double[clm]();
}
int Layer::addNeurons(){
int i, j;
double mean, stddev;
distribution_max = 0;
mean = 50; stddev = 10.0;
default_random_engine generator;
normal_distribution<double> distribution(mean,stddev);
NeuronLayer = new Neuron*[rows]();
for (i = 0; i < rows; i++){
NeuronLayer[i] = new Neuron[clms]();
}
for(i = 0; i < rows; i++){
for(j =0; j < clms; j++){
NeuronLayer[i][j].row = i;
NeuronLayer[i][j].clm = j;
if((i%5 == 0) && (j%5 == 0)){
NeuronLayer[i][j].excitatory = false;
NeuronLayer[i][j].Inhibitory();
//cout << i << " " << j << endl;
}
else
NeuronLayer[i][j].excitatory = true;
NeuronLayer[i][j].glutamate_pr = distribution(generator);
if(distribution_max < NeuronLayer[i][j].glutamate_pr)
distribution_max = NeuronLayer[i][j].glutamate_pr;
}
}
return 0;
}
int Layer::addSynapse(int no_wts){
int i, j, k, m, n, count, value_new, connect;
double d = 5, value, p;
std::default_random_engine generator;
std::exponential_distribution<double> distribution(1000);
ConnectionMatrix = new vector<Synapse>*[rows]();
for(i = 0; i < rows; i++){
ConnectionMatrix[i] = new vector<Synapse>[clms]();
}
int **No_of_Connections;
No_of_Connections = new int*[rows]();
for(i = 0; i < rows; i++){
No_of_Connections[i] = new int[clms]();
}
//379851//new: 364884
//initially create a network where every neuron is connected to 20-40 neighbors.
int total_count = 0, temp_count = 0;
for(i = 0; i < rows; i++){
for(j = 0; j < clms; j++){
count = 0;
value_new = floor(1000*distribution(generator));
//if(value_new > 99)
//value_new = 99;
for(m = 0; m < rows; m++){
for(n = 0; n < clms; n++){
//initial connection criteria: distance between 2 neurons
//no self feedback
//&& (sqrt((i - m)*(i - m) + (j - n)*(j - n)) < d)
//(value < exp(-((double)(i - m)*(i - m))/(double)connections[value_new] -((double)(j - n)*(j - n))/(double)connections[value_new]))
value = drand48();
if((sqrt((i - m)*(i - m) + (j - n)*(j - n)) < (double)(d+value_new)) && (!(i == m && j == n)) && (!(!NeuronLayer[i][j].excitatory && !NeuronLayer[m][n].excitatory)) ){
ConnectionMatrix[i][j].push_back(Synapse());
ConnectionMatrix[i][j][count].row = m;
ConnectionMatrix[i][j][count].clm = n;
value = drand48();
ConnectionMatrix[i][j][count].weight = value;
if(NeuronLayer[m][n].excitatory){
ConnectionMatrix[i][j][count].excitatory = true;
ConnectionMatrix[i][j][count].NRmax = 15*value;
ConnectionMatrix[i][j][count].tau = 0;
}
else{
ConnectionMatrix[i][j][count].excitatory = false;
ConnectionMatrix[i][j][count].NRmax = 0;
ConnectionMatrix[i][j][count].tau = 0;
ConnectionMatrix[i][j][count].NR = 0;
}
count = count+1;
//fprintf(cFile,"%f ",value);
}
}
}
//cout << count << " " ;
total_count += count;
No_of_Connections[i][j] += count;
}
}
//cout << total_count << endl;
//exit(0);
////initial connection between the first 2 neurons
//i = 24; j = 24; m = 74; n = 74;
//count = 0;
//ConnectionMatrix[i][j].push_back(Synapse());
//ConnectionMatrix[i][j][count].row = m;
//ConnectionMatrix[i][j][count].clm = n;
//value = drand48();
//ConnectionMatrix[i][j][count].weight = value;
//ConnectionMatrix[i][j][count].excitatory = true;
//ConnectionMatrix[i][j][count].NRmax = 30*value;
//ConnectionMatrix[i][j][count].tau = 0;
//No_of_Connections[i][j] += 1;
//ConnectionMatrix[m][n].push_back(Synapse());
//ConnectionMatrix[m][n][count].row = i;
//ConnectionMatrix[m][n][count].clm = j;
//value = drand48();
//ConnectionMatrix[m][n][count].weight = value;
//ConnectionMatrix[m][n][count].excitatory = true;
//ConnectionMatrix[m][n][count].NRmax = 30*value;
//ConnectionMatrix[m][n][count].tau = 0;
//No_of_Connections[m][n] += 1;
//total_count += 2;
////for(i = 0; i < rows; i++){
//// for(j = 0; j < clms; j++){
//// cout << No_of_Connections[i][j] << " " ;
//// }
//// cout << endl;
////}
////exit(0);
////#pragma omp parallel for private(i,j,k,p,value,count,m,n)
//for(i = 0; i < rows; i++){
// for(j = 0; j < clms; j++){
// if(!((i == 24 && j == 24) || (i == 74 && j == 74))){
// count = 0;
// for(m = 0; m < rows; m++){
// for(n = 0; n < clms; n++){
// //inhibitory neurons do not see each other
// //no self feedback
// value = drand48();
// temp_count = total_count;
// if( (value < ((double)2*(double)No_of_Connections[m][n]/(double)temp_count)) && (!(i == m && j == n)) && (!(!NeuronLayer[i][j].excitatory && !NeuronLayer[m][n].excitatory)) ){
// ConnectionMatrix[i][j].push_back(Synapse());
// ConnectionMatrix[i][j][count].row = m;
// ConnectionMatrix[i][j][count].clm = n;
// value = drand48();
// ConnectionMatrix[i][j][count].weight = value;
// if(NeuronLayer[m][n].excitatory){
// ConnectionMatrix[i][j][count].excitatory = true;
// ConnectionMatrix[i][j][count].NRmax = 30*value;
// ConnectionMatrix[i][j][count].tau = 0;
// }
// else{
// ConnectionMatrix[i][j][count].excitatory = false;
// ConnectionMatrix[i][j][count].NRmax = 0;
// ConnectionMatrix[i][j][count].tau = 0;
// ConnectionMatrix[i][j][count].NR = 0;
// }
// count = count+1;
// temp_count = ConnectionMatrix[m][n].size();
// ConnectionMatrix[m][n].push_back(Synapse());
// ConnectionMatrix[m][n][temp_count].row = i;
// ConnectionMatrix[m][n][temp_count].clm = j;
// value = drand48();
// ConnectionMatrix[m][n][temp_count].weight = value;
// if(NeuronLayer[i][j].excitatory){
// ConnectionMatrix[m][n][temp_count].excitatory = true;
// ConnectionMatrix[m][n][temp_count].NRmax = 30*value;
// ConnectionMatrix[m][n][temp_count].tau = 0;
// }
// else{
// ConnectionMatrix[m][n][temp_count].excitatory = false;
// ConnectionMatrix[m][n][temp_count].NRmax = 0;
// ConnectionMatrix[m][n][temp_count].tau = 0;
// ConnectionMatrix[m][n][temp_count].NR = 0;
// }
// total_count += 2;
// No_of_Connections[i][j] += 1;
// No_of_Connections[m][n] += 1;
// }
// }
// }
// //cout << count << " " ;
// }
// }
//}
//cout << total_count << endl;
// for(i = 0; i < rows; i++){
// for(j = 0; j < clms; j++){
// cout << No_of_Connections[i][j] << " " ;
// }
// cout << endl;
// }
//
//exit(0);
//#pragma omp parallel for private(i,j)
for(i = 0; i < rows; i++){
for(j = 0; j < clms; j++){
NeuronLayer[i][j].glutamateinitialize(ConnectionMatrix[i][j], NeuronLayer);
}
}
//exit(0);
for(i = 0; i < rows; i++){
for(j = 0; j < clms; j++){
for(count = 0; count < ConnectionMatrix[i][j].size(); count++){
if(ConnectionMatrix[i][j][count].excitatory)
NeuronLayer[ConnectionMatrix[i][j][count].row][ConnectionMatrix[i][j][count].clm].glutamate += ConnectionMatrix[i][j][count].NR;
}
}
}
return 0;
}
int Layer::stimulateNeurons(){
int index, iterations;
int i, j, espikes, ispikes;
double avg_glutamate;
FILE *pFile = fopen("spikes.txt","w");
FILE *eFile = fopen("potential.txt","w");
FILE *gFile = fopen("glutamate.txt","w");
FILE *spFile = fopen("spikepatterns.txt","w");
//variable index can be used to apply a stimulating current to random neuron(s) in each iteration
for(iterations = 0; iterations < 60000; iterations++){
index = rand()%(rows*clms);
espikes = 0;
ispikes = 0;
avg_glutamate = 0;
//loop to record the average glutamate released and the number of excitatory and inhibitory neurons firing
for(i = 0; i < rows; i++){
for(j = 0; j < clms; j++){
//if((iterations > 5000) && (iterations < 15000))
//fprintf(eFile,"%f ", NeuronLayer[i][j].E);
//fprintf(gFile,"%f ", NeuronLayer[i][j].glutamate);
//fprintf(spFile,"%f ",NeuronLayer[i][j].S);
avg_glutamate += NeuronLayer[i][j].glutamate;
if((i%5 == 0) && (j%5 == 0))
ispikes += NeuronLayer[i][j].S;
else
espikes += NeuronLayer[i][j].S;
}
}
//if((iterations > 5000) && (iterations < 15000))
//fprintf(eFile,"\n");
//fprintf(gFile,"\n");
//fprintf(spFile,"\n");
//cout << espikes << " " << ispikes << " ";// << endl;
//fprintf(gFile,"%f\n", avg_glutamate/(rows*clms));
fprintf(pFile,"%d %d %d\n",iterations,espikes,ispikes);
#pragma omp parallel for private(i,j)
for(i = 0; i < rows; i++){
for(j = 0; j < clms; j++){
NeuronLayer[i][j].glutamaterelease(ConnectionMatrix[i][j],NeuronLayer);
}
}
#pragma omp barrier
#pragma omp parallel for private(i,j)
for(i = 0; i < rows; i++){
for(j = 0; j < clms; j++){
//if(i*clms+j == index)
NeuronLayer[i][j].computePotential(ConnectionMatrix[i][j],0, iterations);
//else
//NeuronLayer[i][j].computePotential(ConnectionMatrix[i][j],0, iterations);
}
}
#pragma omp barrier
recordPotential(iterations);
}
fclose(eFile);
fclose(gFile);
fclose(spFile);
fclose(pFile);
return 0;
}
int Layer::recordPotential(int iterations){
int i,j, center_i, center_j;
double distance, potential, sigma = 2;
center_i = rows/2;
center_j = clms/2;
//potential is assumed to be recorded from the center of the layer.
//neuron membrane potentials are multiplied by a Gaussian centered at the center.
potential = 0.0;
for(i = 0; i < rows; i++){
for(j = 0; j < clms; j++){
distance = ((double)1/sqrt((double)2*M_PI*sigma*sigma))*exp(-((center_i - i)*(center_i - i) + (center_j - j)*(center_j - j))/(double)2*sigma*sigma);
potential += distance*NeuronLayer[i][j].E;
}
}
cout << potential << " " << iterations << endl;
return 0;
}
int main(){
//omp_set_num_threads(20);
//initialize random number generator
srand (time(NULL));
//srand (1);
clock_t begin = clock();
#ifndef WIN32
srand48(time(NULL));
#endif
Layer pyramidLayer(100,100);
pyramidLayer.addNeurons();
pyramidLayer.addSynapse(0);
pyramidLayer.stimulateNeurons();
clock_t end = clock();
double time_secs = double(end - begin) / CLOCKS_PER_SEC;
//cout << "Time in secs:" << " " << time_secs << endl;
}