# -*- coding:utf-8 -*-
######## GPnetSim.py ############
"""\
Create a network of GP neurons using dictionaries for channels, synapses, and network parameters
Can use ghk for calcium permeable channels if ghkYesNo=1
Optional calcium concentration in compartments (calcium=1)
Optional synaptic plasticity based on calcium (plasyesno=1)
Spines are optional (spineYesNo=1), but not allowed for network
The graphs won't work for multiple spines per compartment
"""
from __future__ import print_function, division
import logging
import numpy as np
import matplotlib.pyplot as plt
plt.ion()
from pprint import pprint
import moose
from moose_nerp.prototypes import (cell_proto,
clocks,
inject_func,
create_network,
tables,
net_output,
logutil,
util,
standard_options)
from moose_nerp import (gp,gp_net)
from moose_nerp.graph import net_graph, neuron_graph, spine_graph
option_parser = standard_options.standard_options(default_injection_current=[50e-12])#, 100e-12]
param_sim = option_parser.parse_args()
logging.basicConfig(level=logging.INFO)
log = logutil.Logger()
#################################-----------create the model
#overrides:
gp.synYN = True
gp.plasYN = False
##create neuron prototypes with synapses and calcium
neur_syn,neuron = cell_proto.neuronclasses(gp)
all_neur_types=neuron
#create network and plasticity
population,connections,plas=create_network.create_network(gp, gp_net, all_neur_types)
###------------------Current Injection
if gp_net.num_inject<np.inf and not gp_net.single :
inject_pop=inject_func.inject_pop(population['pop'],gp_net.num_inject)
else:
inject_pop=population['pop']
pg=inject_func.setupinj(gp, param_sim.injection_delay,param_sim.injection_width,inject_pop)
moose.showmsg(pg)
##############--------------output elements
if gp_net.single:
vmtab, catab, plastab, currtab = tables.graphtables(gp, all_neur_types,
param_sim.plot_current,
param_sim.plot_current_message,
[])
if gp.synYN:
#overwrite plastab above, since it is empty
syntab, plastab=tables.syn_plastabs(connections,plas)
if gp.spineYN:
spinecatab,spinevmtab=tables.spinetabs(gp,neuron)
else:
spiketab, vmtab, plastab, catab = net_output.SpikeTables(gp, population['pop'], gp_net.plot_netvm, plas, gp_net.plots_per_neur)
########## clocks are critical
## these function needs to be tailored for each simulation
## if things are not working, you've probably messed up here.
if gp_net.single:
simpath=['/'+neurotype for neurotype in all_neur_types]
else:
#possibly need to setup an hsolver separately for each cell in the network
simpath=[gp_net.netname]
clocks.assign_clocks(simpath, param_sim.simdt, param_sim.plotdt, param_sim.hsolve,gp.param_cond.NAME_SOMA)
################### Actually run the simulation
def run_simulation(injection_current, simtime):
print(u'◢◤◢◤◢◤◢◤ injection_current = {} ◢◤◢◤◢◤◢◤'.format(injection_current))
pg.firstLevel = injection_current
moose.reinit()
moose.start(simtime)
traces, names = [], []
for inj in param_sim.injection_current:
run_simulation(injection_current=inj, simtime=param_sim.simtime)
if gp_net.single and len(vmtab):
for neurnum,neurtype in enumerate(gp.neurontypes()):
traces.append(vmtab[neurnum][0].vector)
names.append('{} @ {}'.format(neurtype, inj))
if gp.synYN:
net_graph.syn_graph(connections, syntab, param_sim.simtime)
if gp.spineYN:
spine_graph.spineFig(gp,spinecatab,spinevmtab, param_sim.simtime)
else:
if gp_net.plot_netvm:
net_graph.graphs(population['pop'], param_sim.simtime, vmtab,catab,plastab)
net_output.writeOutput(gp, gp_net.outfile+str(inj),spiketab,vmtab,population)
if gp_net.single:
neuron_graph.SingleGraphSet(traces, names, param_sim.simtime)
# block in non-interactive mode
util.block_if_noninteractive()