// NetGUI default section. Artificial cells, if any, are located here.
create acell_home_
access acell_home_
L=1
diam=1
//Network cell templates
// Layer5_pyr
//Artificial cells
// NetStim_NetStim
// IntFire1_IntFire1
/////////////////////////////////////
// Receptor Mechanisms realized with Exp2Syn. These will be replaced with kinetic schemes
begintemplate AMPA
public s
objref s
proc init() {
s = new Exp2Syn(0.5)
s.tau1=0.5
s.tau2=5
s.e=0
}
endtemplate AMPA
begintemplate NMDA
public s
objref s
proc init() {
s = new Exp2Syn(0.5)
s.tau1=1
s.tau2=20
s.e=0
}
endtemplate NMDA
begintemplate GABAA
public s
objref s
proc init() {
s = new Exp2Syn(0.5)
s.tau1=0.5
s.tau2=5
s.e=-80
}
endtemplate GABAA
begintemplate GABAB
public s
objref s
proc init() {
s = new Exp2Syn(0.5)
s.tau1=1
s.tau2=20
s.e=-80
}
endtemplate GABAB
///////////////////////////////////////
begintemplate Layer5_pyr
public is_art
public init, topol, basic_shape, subsets, geom, biophys
public x, y, z, position, connect2target
public ampa,nmda,gabaa,gabab
public soma, dend
public all, somatic, dendritic, apical, basal, dend0, dend1, dend2, dend3
public dend4, dend5, dend6, dend7
// if gbar_x is declared as 'public', can not be set in biophys() below
// public gbar_ar, gbar_cat
external Tfactor,Hfactor,Ttau,Htau
objref synlist
proc init() {
topol()
subsets()
geom()
geom_nseg()
biophys()
synlist = new List()
synapses()
x = y = z = 0 // only change via position
}
create soma, dend[8]
proc topol() { local i
connect dend(0), soma(1)
for i = 1, 2 connect dend[i](0), dend(1)
for i = 3, 4 connect dend[i](0), dend[i-1](1)
connect dend[5](0), soma(0) //was soma(1)this is correct!
for i = 6, 7 connect dend[i](0), dend[5](1)
basic_shape()
}
proc basic_shape() {
// THESE AND LENGHTHS MUST CHANGE TOGETHER!!!
soma {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(0, 23, 0, 1)}
dend {pt3dclear() pt3dadd(0, 23, 0, 1) pt3dadd(0, 83, 0, 1)}
dend[1] {pt3dclear() pt3dadd(0, 83, 0, 1) pt3dadd(-150, 83, 0, 1)}
dend[2] {pt3dclear() pt3dadd(0, 83, 0, 1) pt3dadd(0, 483, 0, 1)}
dend[3] {pt3dclear() pt3dadd(0, 483, 0, 1) pt3dadd(0, 883, 0, 1)}
dend[4] {pt3dclear() pt3dadd(0, 883, 0, 1) pt3dadd(0, 1133, 0, 1)}
dend[5] {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(0, -50, 0, 1)}
dend[6] {pt3dclear() pt3dadd(0, -50, 0, 1) pt3dadd(-106, -156, 0, 1)}
dend[7] {pt3dclear() pt3dadd(0, -50, 0, 1) pt3dadd(106, -156, 0, 1)}
}
objref all, somatic, dendritic, apical, basal, dend0, dend1, dend2, dend3, dend4
objref dend5, dend6, dend7
proc subsets() { local i
objref all, somatic, dendritic, apical, basal, dend0, dend1, dend2, dend3
objref dend4, dend5, dend6, dend7
all = new SectionList()
soma all.append()
for i=0, 7 dend[i] all.append()
somatic = new SectionList()
soma somatic.append()
dendritic = new SectionList()
for i=0, 7 dend[i] dendritic.append()
apical = new SectionList()
for i=0, 4 dend[i] apical.append()
basal = new SectionList()
for i=5, 7 dend[i] basal.append()
dend0 = new SectionList()
dend[0] dend0.append()
dend1 = new SectionList()
dend[1] dend1.append()
dend2 = new SectionList()
dend[2] dend2.append()
dend3 = new SectionList()
dend[3] dend3.append()
dend4 = new SectionList()
dend[4] dend4.append()
dend5 = new SectionList()
dend[5] dend5.append()
dend6 = new SectionList()
dend[6] dend6.append()
dend7 = new SectionList()
dend[7] dend7.append()
}
//increased lengths and diams by 70% for human size
proc geom() {
forsec all { }
// soma.L = 13 //BUSH 1999 spike amp smaller
soma.L=39 //Bush 1993
dend.L = 102
dend[1].L = 255
dend[2].L = 680 //default 400
dend[3].L = 680 //default 400
dend[4].L = 425
dend[5].L = 85
dend[6].L = 255 // default 150
dend[7].L = 255 // default 150
//soma.diam = 18.95 //Bush 1999
soma.diam = 28.9 //Bush 1993
dend.diam = 10.2
dend[1].diam = 5.1
dend[2].diam = 7.48 //default 4.4
dend[3].diam = 4.93 //default 2.9
dend[4].diam = 3.4
dend[5].diam = 6.8
dend[6].diam = 8.5
dend[7].diam = 8.5
}
// external lambda_f
proc geom_nseg() {
soma area(.5) // make sure diam reflects 3d points
forsec all { if (L < 50) {nseg=1} else {nseg=int(L/50)} }
}
proc biophys() {
/* USING DEFAULT NEURON HH GIVES CORRECT SPIKE WIDTH */
forsec all{
Ra=200
cm=0.85 // decreased by 70%
}
forsec somatic {
insert hh
gnabar_hh=0.16 // to match latency with old segmentation
gkbar_hh=0.01 //0.01 0.09 for spiking
gl_hh=0.0000426 //decreased by 70%
el_hh=-65 //default -65
insert ca
gbar_ca=60// 100 //150 pS/um2=0.00015 S/cm2
insert cad
taur_cad=20 //20 ms
insert kca
gbar_kca=0.0002//0.0002 //(0.00015 mho/cm2= S/cm2)
insert km
gbar_km=200//200 //10 pS/um2
insert cat
gbar_cat=Tfactor
insert ar
gbar_ar=Hfactor
}
forsec dendritic {
insert hh
gnabar_hh=0.14 //0.45 S/cm2
gkbar_hh=0.01 //0.09 for spiking
gl_hh=0.0000426
el_hh=-71 //default -71
insert ca
gbar_ca=60//100 //15 pS/um2
insert cad
taur_cad=20 //20 ms
insert kca
gbar_kca=0.0002//0.0002 //0.015(mho/cm2= S/cm2)
insert km
gbar_km=200//200 //10 pS/um2
insert cat
insert ar
}
soma distance() // origin set at soma for distance(x) measurement
forsec dendritic{
for(x,0){ gbar_cat(x)=Tfactor*exp(Ttau*distance(x))
gbar_ar(x)=Hfactor*exp(Htau*distance(x)) }
}
} //end proc biophysics
proc position() { local i
soma for i = 0, n3d()-1 {
pt3dchange(i, $1-x+x3d(i), $2-y+y3d(i), $3-z+z3d(i), diam3d(i))
}
x = $1 y = $2 z = $3
}
proc connect2target() { //$o1 target point process, $o2 returned NetCon
soma $o2 = new NetCon(&v(1), $o1)
}
objref ampa[9],nmda[9],gabaa[9],gabab[9]
proc synapses() {
dend[0]{ ampa[0] = new AMPA() nmda[0] = new NMDA() gabaa[0] = new GABAA() gabab[0] = new GABAB() }
dend[1]{ ampa[1] = new AMPA() nmda[1] = new NMDA() gabaa[1] = new GABAA() gabab[1] = new GABAB() }
dend[2]{ ampa[2] = new AMPA() nmda[2] = new NMDA() gabaa[2] = new GABAA() gabab[2] = new GABAB() }
dend[3]{ ampa[3] = new AMPA() nmda[3] = new NMDA() gabaa[3] = new GABAA() gabab[3] = new GABAB() }
dend[4]{ ampa[4] = new AMPA() nmda[4] = new NMDA() gabaa[4] = new GABAA() gabab[4] = new GABAB() }
dend[5]{ ampa[5] = new AMPA() nmda[5] = new NMDA() gabaa[5] = new GABAA() gabab[5] = new GABAB() }
dend[6]{ ampa[6] = new AMPA() nmda[6] = new NMDA() gabaa[6] = new GABAA() gabab[6] = new GABAB() }
dend[7]{ ampa[7] = new AMPA() nmda[7] = new NMDA() gabaa[7] = new GABAA() gabab[7] = new GABAB() }
soma { ampa[8] = new AMPA() nmda[8] = new NMDA() gabaa[8] = new GABAA() gabab[8] = new GABAB() }
}
func is_art() { return 0 }
endtemplate Layer5_pyr
//////////////////////////////////////////////
/////////////////////////////////////////////
//execute1("celltypes.element(\"Layer2_pyr\")")
begintemplate Layer2_pyr
public init, topol, basic_shape, subsets, geom, biophys
public synlist, x, y, z, position, connect2target
public ampa,nmda,gabaa,gabab
public soma, dend
public all, somatic, dendritic, apical, basal, dend0, dend1
public dend2, dend3, dend4, dend5, dend6
public pre, ampa, gabaa, gabab, nmda
public gbar_ar, gbar_cat
objref synlist
proc init() {
topol()
subsets()
geom()
biophys()
geom_nseg()
synlist = new List()
synapses()
x = y = z = 0 // only change via position
}
create soma, dend[7]
proc topol() { local i
connect dend(0), soma(1)
for i = 1, 2 connect dend[i](0), dend(1)
connect dend[3](0), dend[2](1)
connect dend[4](0), soma(0) //was soma(1), 0 is correct!
for i = 5, 6 connect dend[i](0), dend[4](1)
basic_shape()
}
proc basic_shape() {
soma {pt3dclear() pt3dadd(-50, 765, 0, 1) pt3dadd(-50, 778, 0, 1)}
dend {pt3dclear() pt3dadd(-50, 778, 0, 1) pt3dadd(-50, 813, 0, 1)}
dend[1] {pt3dclear() pt3dadd(-50, 813, 0, 1) pt3dadd(-250, 813, 0, 1)}
dend[2] {pt3dclear() pt3dadd(-50, 813, 0, 1) pt3dadd(-50, 993, 0, 1)}
dend[3] {pt3dclear() pt3dadd(-50, 993, 0, 1) pt3dadd(-50, 1133, 0, 1)}
dend[4] {pt3dclear() pt3dadd(-50, 765, 0, 1) pt3dadd(-50, 715, 0, 1)}
dend[5] {pt3dclear() pt3dadd(-50, 715, 0, 1) pt3dadd(-156, 609, 0, 1)}
dend[6] {pt3dclear() pt3dadd(-50, 715, 0, 1) pt3dadd(56, 609, 0, 1)}
}
objref all, somatic, dendritic, apical, basal, dend0, dend1
objref dend2, dend3, dend4, dend5, dend6
proc subsets() { local i
objref all, somatic, dendritic, apical, basal, dend0, dend1
objref dend2, dend3, dend4, dend5, dend6
all = new SectionList()
soma all.append()
for i=0, 6 dend[i] all.append()
somatic = new SectionList()
soma somatic.append()
dendritic = new SectionList()
for i=0, 6 dend[i] dendritic.append()
apical = new SectionList()
for i=0, 3 dend[i] apical.append()
basal = new SectionList()
for i=4, 6 dend[i] basal.append()
dend0 = new SectionList()
dend dend0.append()
dend1 = new SectionList()
dend[1] dend1.append()
dend2 = new SectionList()
dend[2] dend2.append()
dend3 = new SectionList()
dend[3] dend3.append()
dend4 = new SectionList()
dend[4] dend4.append()
dend5 = new SectionList()
dend[5] dend5.append()
dend6 = new SectionList()
dend[6] dend6.append()
}
// increased by 70% for human
proc geom() {
forsec all { }
soma.L = 22.1
dend.L = 59.5
dend[1].L = 340
dend[2].L = 306
dend[3].L = 238
dend[4].L = 85
dend[5].L = 255
dend[6].L = 255
soma.diam = 23.4
dend.diam = 4.25
dend[1].diam = 3.91
dend[2].diam = 4.08
dend[3].diam = 3.4
dend[4].diam = 4.25
dend[5].diam = 2.72
dend[6].diam = 2.72
}
// external lambda_f
proc geom_nseg() {
soma area(.5) // make sure diam reflects 3d points
forsec all { if (L < 50) {nseg=1} else {nseg=int(L/50)} }
}
proc biophys() {
/* USING DEFAULT NEURON HH GIVES CORRECT SPIKE WIDTH */
forsec all {
Ra = 200
cm = 0.6195 // decreased 70% from 2.065
}
forsec somatic {
insert hh
gnabar_hh=0.18 // to match latency with old segmentation
gkbar_hh=0.01 //0.09
gl_hh=0.0000426 //decreased 70% for human
el_hh=-65
insert km
gbar_km=250 //450 pS/um2
insert cat
gbar_cat=0.0
insert ar
gbar_ar=0.0
}
forsec dendritic {
insert hh
gnabar_hh=0.15//0.45 S/cm2
gkbar_hh=0.01 //0.09
gl_hh=0.0000426
el_hh=-65
insert km
gbar_km=250 //450 pS/um2 =uS/cm2
insert cat
gbar_cat=0.0
insert ar
gbar_ar=0.0
}
} //end proc biophysics
proc position() { local i
soma for i = 0, n3d()-1 {
pt3dchange(i, $1-x+x3d(i), $2-y+y3d(i), $3-z+z3d(i), diam3d(i))
}
x = $1 y = $2 z = $3
}
proc connect2target() { //$o1 target point process, $o2 returned NetCon
soma $o2 = new NetCon(&v(1), $o1)
}
objref ampa[8],nmda[8],gabaa[8],gabab[8]
proc synapses() {
dend[0]{ ampa[0] = new AMPA() nmda[0] = new NMDA() gabaa[0] = new GABAA() gabab[0] = new GABAB() }
dend[1]{ ampa[1] = new AMPA() nmda[1] = new NMDA() gabaa[1] = new GABAA() gabab[1] = new GABAB() }
dend[2]{ ampa[2] = new AMPA() nmda[2] = new NMDA() gabaa[2] = new GABAA() gabab[2] = new GABAB() }
dend[3]{ ampa[3] = new AMPA() nmda[3] = new NMDA() gabaa[3] = new GABAA() gabab[3] = new GABAB() }
dend[4]{ ampa[4] = new AMPA() nmda[4] = new NMDA() gabaa[4] = new GABAA() gabab[4] = new GABAB() }
dend[5]{ ampa[5] = new AMPA() nmda[5] = new NMDA() gabaa[5] = new GABAA() gabab[5] = new GABAB() }
dend[6]{ ampa[6] = new AMPA() nmda[6] = new NMDA() gabaa[6] = new GABAA() gabab[6] = new GABAB() }
soma { ampa[7] = new AMPA() nmda[7] = new NMDA() gabaa[7] = new GABAA() gabab[7] = new GABAB() }
}
func is_art() { return 0 }
endtemplate Layer2_pyr
/////////////////////////////////////
begintemplate FeedX
public pp, connect2target, x, y, z, is_art
external acell_home_
objref pp
proc init() {
acell_home_ pp = new NetStim(.5)
pp.start = 50
pp.number = 0
pp.interval = 10
pp.noise = 0
}
func is_art() { return 1 }
proc connect2target() { $o2 = new NetCon(pp, $o1) }
endtemplate FeedX
/////////////////////////////////////
begintemplate Inhib
public cell,connect2target,init,ampa,nmda,gabaa,gabab
external AMPA,NMDA,GABAA,GABAB
objref ampa[1],nmda[1],gabaa[1],gabab[1]
create cell
proc init(){
access cell
L=39
diam=20
Ra=200
cm=0.85
insert hh
//gnabar_hh=0.45 //0.14 0.45 without active dends
//gkbar_hh=0.09 //0.01 0.09 for spiking
//gl_hh=0.0000426 //decreased by 70%
//el_hh=-65 //default -65
//insert ca
//gbar_ca=60// 100 //150 pS/um2=0.00015 S/cm2
//insert cad
//depth_cad=10
//taur_cad=20 //20 ms
//insert kca
//gmax_kca=0.0002//0.0002 //(0.00015 mho/cm2= S/cm2)
//insert km
//gbar_km=200//200 //10 pS/um2
synapses()
}
proc synapses() {
cell {
ampa = new AMPA()
nmda = new NMDA()
gabaa = new GABAA()
gabab = new GABAB()
}
}
// proc connect2target() {
// $o2 = new NetCon(cell(0.5), $o1)
proc connect2target() { //$o1 target point process, $o2 returned NetCon
cell $o2 = new NetCon(&v(1), $o1)
}
endtemplate Inhib
/////////////////////////////////////
/////////////////////////////////////
// Keep track of connections
objref AMPAconnects, NMDAconnects, GABAAconnects, GABABconnects
AMPAconnects = new List()
NMDAconnects = new List()
GABAAconnects = new List()
GABABconnects = new List()
objref netcon
/////////////////////////////////////
///////The Network Constructor/////////////
// replaced by parallel version below
proc rconnect(){
// usage: rconnect(source-cell, target-cell, target-section, rtype,
// weight, delay, threshold )
// rtype= 0=AMPA ||| 1=NMDA ||| 2=GABAa ||| 3= GABAb
// -----------------------------------------------------------------------
if ($1 >= gid_end) { $6 += stim_delay_offset }
if (pc.gid_exists($1) == 1) { return } // owned but no associated cell
if ( $4 == 0){ //$o1.connect2target($o2.ampa[$3].s, netcon)
netcon = pc.gid_connect($1, $o2.ampa[$3].s)
netcon.weight = $5 netcon.delay = $6 netcon.threshold = $7
AMPAconnects.append(netcon) }
if ( $4 == 1){ //$o1.connect2target($o2.nmda[$3].s, netcon)
netcon = pc.gid_connect($1, $o2.nmda[$3].s)
netcon.weight = $5 netcon.delay = $6 netcon.threshold = $7
NMDAconnects.append(netcon) }
if ( $4 == 2){ //$o1.connect2target($o2.gabaa[$3].s, netcon)
netcon = pc.gid_connect($1, $o2.gabaa[$3].s)
netcon.weight = $5 netcon.delay = $6 netcon.threshold = $7
GABAAconnects.append(netcon) }
if ( $4 == 3){ //$o1.connect2target($o2.gabab[$3].s, netcon)
netcon = pc.gid_connect($1, $o2.gabab[$3].s)
netcon.weight = $5 netcon.delay = $6 netcon.threshold = $7
GABABconnects.append(netcon) }
if (( $4 > 3) || ($3 < 0)){ print "Receptor Type not supported" }
}
// Create a 2-D grid of cells
XD = X_DIM - 1
YD = Y_DIM - 1
//
objref PL5[X_DIM][Y_DIM]
objref PL2[X_DIM][Y_DIM]
for i=0,XD{
for j=0,YD{
PL5[i][j] = create_cell("new Layer5_pyr()", PL5_type, i, j)
if (PL5[i][j] != nil) PL5[i][j].position(i*100,0,j*100)
PL2[i][j] = create_cell("new Layer2_pyr()", PL2_type, i, j)
if (PL2[i][j] != nil) PL2[i][j].position(i*100,535,j*100)
} }
//
// Create a grid for Inhibitory cells that parallels Pyramidal cells
objref IPL2[X_DIM][Y_DIM]
objref IPL5[X_DIM][Y_DIM]
proc create_inhib(){local x, y
// Create a sparse matrix of inhibitory cells
// Usage: create_inhib(offset, space)
// offset= position of 1st cell on X axis
// space= number of blank positions on X axis between cells
for y=0,YD{
for x=$1,XD{
IPL2[x][y] = new Inhib()
IPL5[x][y] = new Inhib()
x=x+$2 }
} }
// create_inhib(1,2)
proc I_zig_zag(){local x, y, offset
// Creates a sparse matrix of inhibitory cells staggered
// so that the 1st element along the X-axis
// begins alternatly at position 1 or 0.
// Usage: I_zig_zag(space)
// space= number of blank positions on X axis between cells
offset = 0
for y=0,YD{
for x=offset,XD{
IPL2[x][y] = create_cell("new Inhib()", IPL2_type, x, y)
IPL5[x][y] = create_cell("new Inhib()", IPL5_type, x, y)
x=x+$1 }
if (offset==0) {offset=1} else {offset=0}
} }
I_zig_zag(2)
/////////////////////////////////////
/////////////////////////////////////
// DIPOLE _________________________________________________________
{load_file("dipole.hoc")}
objref dipoleL5, dipoleL2
dipoleL5 = new List()
dipoleL2 = new List()
for i=0,XD{
for j=0,YD {
if (cell_exist(PL5_type, i, j)) PL5[i][j].soma dipoleL5.append(new DipoleForCell() )
if (cell_exist(PL2_type, i, j)) PL2[i][j].soma dipoleL2.append(new DipoleForCell() )
} }
dL5=0
func L5_dipole(){ local dp
dp=0
for i=0,XD{
for j=0,YD{
forsec PL5[i][j].all {dp += Qsum_dipole}
} }
dL5 = dp
return dp
}
func thishost_total_dipole(){ local dp, gid, last localobj cell
dp=0
last = IPL2_type*X_DIM*Y_DIM
for pcitr(&gid) {
if (gid < last) {
cell = pc.gid2cell(gid)
forsec cell.all {dp += Qsum_dipole}
}
}
return dp
}
dL2=0
func L2_dipole(){ local dp
dp=0
for i=0,XD{
for j=0,YD{
forsec PL2[i][j].all {dp += Qsum_dipole}
} }
dL2=dp
return dp
}
func dset() {local s
s=0
forsec $o1 {s+=Qsum_dipole}
return s
}
// ---------------------------------------------------------DIPOLE