% make MSNs in a single channel, both D1 and D2
% The results (one for each MSN) are stored in files name results#, where # is
% an expt number.
% These raw results files will then be used by code like make
% MAKE_MSN_RESPONSES
clear all;
% define the structure component designators of
% all_pars so they can be altered in a sensible way
S_SIM_GENERAL_STRUCT = 1;
S_XPT_STRUCTURE = 2;
S_CTX_AND_STIM_STRUCT = 3;
S_STDP_ELIGIBILITY = 4;
S_DOPAMINE = 5;
S_MSN = 6;
S_PATTERN = 7;
% set one of the following to 1 for non-batched mode, and the
% other to zero.
N_msns_D1 = 1; % set to one for non-batched mode with D1 MSN
N_msns_D2 = 0;% set to one for non-batched mode with D2 MSN
% phases(1) = RANDOM_PATTERNS;
% phases(2) = PATTERN_DISCOVERY;
% phases(3) = PATTERN_MATCH_WITH_PHASIC_DA;
% phases(4) = RANDOM_PATTERNS;
% phases(5) = PATTERN_MATCH_WITH_DA_DIP;
% phases(6) = RANDOM_PATTERNS;
trial_counts(1) = 15;
trial_counts(2) = 40;
trial_counts(3) = 30;
trial_counts(4) = 30;
trial_counts(5) = 40;
trial_counts(6) = 30;
N = 200; % number of synapses
rp = randperm(N); % for determining teh set of strong afferents
% seed = 1;
% ================================================ %
%% set up parameters
xpt_no = 1;
neuron_type = 'D1';
for i = 1:N_msns_D1
seed = i;
all_pars = make_stde_pars(neuron_type, trial_counts, N, rp, seed);
all_pars{S_SIM_GENERAL_STRUCT}.xpt_no = xpt_no;
pars{xpt_no} = all_pars;
xpt_no = xpt_no + 1;
end
neuron_type = 'D2';
for i = 1:N_msns_D2
seed = i + N_msns_D2;
all_pars = make_stde_pars(neuron_type, trial_counts, N, rp, seed);
all_pars{S_SIM_GENERAL_STRUCT}.xpt_no = xpt_no;
pars{xpt_no} = all_pars;
xpt_no = xpt_no + 1;
end
No_xpts = xpt_no - 1;
% =============================================== %
%% batch mode stuff
% do_batch(pars, 'STDE_Shen_batch', No_xpts);
% uncommnet if you are using the Matlab DCE with this helper function