:Interneuron Cells to Pyramidal Cells GABA with local Ca2+ pool and read public soma Ca2+ pool
NEURON {
POINT_PROCESS interV2pyrD_STFD
USEION ca READ eca,ica
NONSPECIFIC_CURRENT igaba
RANGE initW
RANGE Cdur_gaba, AlphaTmax_gaba, Beta_gaba, Erev_gaba, gbar_gaba, W, on_gaba, g_gaba
RANGE eca, tauCa, Icatotal
RANGE ICag, P0g, fCag
RANGE Cainf, pooldiam, z
RANGE lambda1, lambda2, threshold1, threshold2
RANGE fmax, fmin, Wmax, Wmin, maxChange, normW, scaleW, srcid, destid
RANGE pregid,postgid, thr_rp
RANGE F, f, tauF, D1, d1, tauD1, D2, d2, tauD2
RANGE facfactor
}
UNITS {
(mV) = (millivolt)
(nA) = (nanoamp)
(uS) = (microsiemens)
FARADAY = 96485 (coul)
pi = 3.141592 (1)
}
PARAMETER {
srcid = -1 (1)
destid = -1 (1)
Cdur_gaba = 0.7254 (ms)
AlphaTmax_gaba = 7.2609 (/ms)
Beta_gaba = 0.2667 (/ms)
Erev_gaba = -75 (mV)
gbar_gaba = 0.6e-3 (uS)
Cainf = 50e-6 (mM)
pooldiam = 1.8172 (micrometer)
z = 2
k = 0.01
tauCa = 50 (ms)
P0g = .01
fCag = .024
lambda1 = 4 : 3 : 2.0 : 2.0
lambda2 = .01
threshold1 = 0.47 : 0.48 : 0.45 : 0.4 : 0.95 : 1.35 :0.75 :0.55 (uM)
threshold2 = 0.52 : 0.53 : 0.5 : 0.45 : 1.0 : 1.4 : 0.8 : 0.65 :0.70 (uM)
:GABA Weight
initW = 4.5 : : 3 : 2.5 : 3 : 5 : 6.25 : 5
fmax = 4.2
fmin = .8
GAPstart1 = 96000
GAPstop1 = 196000
thr_rp = 1 : .7
facfactor = 1
: the (1) is needed for the range limits to be effective
f = 0 (1) < 0, 1e9 > : 1.3 (1) < 0, 1e9 > : facilitation
tauF = 20 (ms) < 1e-9, 1e9 >
d1 = 0.95 (1) < 0, 1 > : fast depression
tauD1 = 40 (ms) < 1e-9, 1e9 >
d2 = 0.9 (1) < 0, 1 > : slow depression
tauD2 = 70 (ms) < 1e-9, 1e9 >
}
ASSIGNED {
v (mV)
eca (mV)
ica (nA)
igaba (nA)
g_gaba (uS)
on_gaba
W
t0 (ms)
ICan (mA)
ICag (mA)
Afactor (mM/ms/nA)
Icatotal (mA)
dW_gaba
Wmax
Wmin
maxChange
normW
scaleW
pregid
postgid
rp
tsyn
fa
F
D1
D2
}
STATE { r_nmda r_gaba capoolcon }
INITIAL {
on_gaba = 0
r_gaba = 0
W = initW
t0 = -1
Wmax = fmax*initW
Wmin = fmin*initW
maxChange = (Wmax-Wmin)/10
dW_gaba = 0
capoolcon = Cainf
Afactor = 1/(z*FARADAY*4/3*pi*(pooldiam/2)^3)*(1e6)
fa =0
F = 1
D1 = 1
D2 = 1
}
BREAKPOINT {
SOLVE release METHOD cnexp
}
DERIVATIVE release {
if (t0>0) {
if (rp < thr_rp) {
if (t-t0 < Cdur_gaba) {
on_gaba = 1
} else {
on_gaba = 0
}
} else {
on_gaba = 0
}
}
if (t0>0) {
if (rp < thr_rp) {
if (t-t0 < Cdur_gaba) {
on_gaba = 1
} else {
on_gaba = 0
}
} else {
on_gaba = 0
}
}
r_gaba' = AlphaTmax_gaba*on_gaba*(1-r_gaba)-Beta_gaba*r_gaba
dW_gaba = eta(capoolcon)*(lambda1*omega(capoolcon, threshold1, threshold2)-lambda2*GAP1(GAPstart1, GAPstop1)*W)*dt
: Limit for extreme large weight changes
if (fabs(dW_gaba) > maxChange) {
if (dW_gaba < 0) {
dW_gaba = -1*maxChange
} else {
dW_gaba = maxChange
}
}
:Normalize the weight change
normW = (W-Wmin)/(Wmax-Wmin)
if (dW_gaba < 0) {
scaleW = sqrt(fabs(normW))
} else {
scaleW = sqrt(fabs(1.0-normW))
}
W = W + dW_gaba*scaleW
:Weight value limits
if (W > Wmax) {
W = Wmax
} else if (W < Wmin) {
W = Wmin
}
g_gaba = gbar_gaba*r_gaba*facfactor
igaba = W*g_gaba*(v - Erev_gaba)
ICag = P0g*g_gaba*(v - eca)
Icatotal = ICag + k*ica*4*pi*((15/2)^2)*(0.01) : icag+k*ica*Area of soma*unit change
capoolcon'= -fCag*Afactor*Icatotal + (Cainf-capoolcon)/tauCa
}
NET_RECEIVE(dummy_weight) {
t0 = t
rp = unirand()
:F = 1 + (F-1)* exp(-(t - tsyn)/tauF)
D1 = 1 - (1-D1)*exp(-(t - tsyn)/tauD1)
D2 = 1 - (1-D2)*exp(-(t - tsyn)/tauD2)
:printf("%g\t%g\t%g\t%g\t%g\t%g\n", t, t-tsyn, F, D1, D2, facfactor)
:printf("%g\t%g\t%g\t%g\n", F, D1, D2, facfactor)
tsyn = t
facfactor = F * D1 * D2
::F = F+f :F * f
if (F > 3) {
F=3 }
if (facfactor < 0.7) {
facfactor=0.7
}
D1 = D1 * d1
D2 = D2 * d2
:printf("\t%g\t%g\t%g\n", F, D1, D2)
}
:::::::::::: FUNCTIONs and PROCEDUREs ::::::::::::
FUNCTION eta(Cani (mM)) {
LOCAL taulearn, P1, P2, P4, Cacon
P1 = 0.1
P2 = P1*1e-4
P4 = 1
Cacon = Cani*1e3
taulearn = P1/(P2+Cacon*Cacon*Cacon)+P4
eta = 1/taulearn*0.001
}
FUNCTION omega(Cani (mM), threshold1 (uM), threshold2 (uM)) {
LOCAL r, mid, Cacon
Cacon = Cani*1e3
r = (threshold2-threshold1)/2
mid = (threshold1+threshold2)/2
if (Cacon <= threshold1) { omega = 0}
else if (Cacon >= threshold2) { omega = 1/(1+50*exp(-50*(Cacon-threshold2)))}
else {omega = -sqrt(r*r-(Cacon-mid)*(Cacon-mid))}
}
FUNCTION GAP1(GAPstart1 (ms), GAPstop1 (ms)) {
LOCAL s
if (t <= GAPstart1) { GAP1 = 1}
else if (t >= GAPstart1 && t <= GAPstop1) {GAP1 = 1} : During the Gap, apply lamda2*2
else { GAP1 = 1}
}
FUNCTION unirand() { : uniform random numbers between 0 and 1
unirand = scop_random()
}