:Tone to Interneuron Cells AMPA+NMDA with local Ca2+ pool
NEURON {
POINT_PROCESS tone2interD
USEION ca READ eca
NONSPECIFIC_CURRENT inmda, iampa
RANGE initW
RANGE Cdur_nmda, AlphaTmax_nmda, Beta_nmda, Erev_nmda, gbar_nmda, W_nmda, on_nmda, g_nmda
RANGE Cdur_ampa, AlphaTmax_ampa, Beta_ampa, Erev_ampa, gbar_ampa, W, on_ampa, g_ampa
RANGE eca, ICan, P0n, fCan, tauCa, Icatotal
RANGE ICaa, P0a, fCaa
RANGE Cainf, pooldiam, z
RANGE lambda1, lambda2, threshold1, threshold2
RANGE fmax, fmin, Wmax, Wmin, maxChange, normW, scaleW, srcid, destid
RANGE pregid,postgid
}
UNITS {
(mV) = (millivolt)
(nA) = (nanoamp)
(uS) = (microsiemens)
FARADAY = 96485 (coul)
pi = 3.141592 (1)
}
PARAMETER {
srcid = -1 (1)
destid = -1 (1)
Cdur_nmda = 16.7650 (ms)
AlphaTmax_nmda = .2659 (/ms)
Beta_nmda = 0.008 (/ms)
Erev_nmda = 0 (mV)
gbar_nmda = .5e-3 (uS)
Cdur_ampa = 0.713 (ms)
AlphaTmax_ampa = 10.1571 (/ms)
Beta_ampa = 0.4167 (/ms)
Erev_ampa = 0 (mV)
gbar_ampa = 1e-3 (uS)
eca = 120
Cainf = 50e-6 (mM)
pooldiam = 1.8172 (micrometer)
z = 2
tauCa = 50 (ms)
P0n = .015
fCan = .024
P0a = .0015 : .001
fCaa = .024
lambda1 = 3 : 4 : 3 : 4 : 5 : 7 : 10
lambda2 = 0.01
threshold1 = 0.45 : 0.5 : 0.55 : .4 : 0.35
threshold2 = 0.50 : 0.55 : 0.6 : 0.45 : 0.4
initW = 4.5 : 6 : 8 : 7.5 : 6 : 5 : 4 : 5 : 4 : 3 : 4
fmax = 4.3 : 3.8 : 4 : 3
fmin = .8
GAPstart1 = 96000
GAPstop1 = 196000
}
ASSIGNED {
v (mV)
inmda (nA)
g_nmda (uS)
on_nmda
W_nmda
iampa (nA)
g_ampa (uS)
on_ampa
W
t0 (ms)
ICan (mA)
ICaa (mA)
Afactor (mM/ms/nA)
Icatotal (mA)
dW_ampa
Wmax
Wmin
maxChange
normW
scaleW
pregid
postgid
}
STATE { r_nmda r_ampa capoolcon }
INITIAL {
on_nmda = 0
r_nmda = 0
W_nmda = initW
on_ampa = 0
r_ampa = 0
W = initW
t0 = -1
Wmax = fmax*initW
Wmin = fmin*initW
maxChange = (Wmax-Wmin)/10
dW_ampa = 0
capoolcon = Cainf
Afactor = 1/(z*FARADAY*4/3*pi*(pooldiam/2)^3)*(1e6)
}
BREAKPOINT {
SOLVE release METHOD cnexp
}
DERIVATIVE release {
if (t0>0) {
if (t-t0 < Cdur_nmda) {
on_nmda = 1
} else {
on_nmda = 0
}
if (t-t0 < Cdur_ampa) {
on_ampa = 1
} else {
on_ampa = 0
}
}
r_nmda' = AlphaTmax_nmda*on_nmda*(1-r_nmda)-Beta_nmda*r_nmda
r_ampa' = AlphaTmax_ampa*on_ampa*(1-r_ampa)-Beta_ampa*r_ampa
dW_ampa = eta(capoolcon)*(lambda1*omega(capoolcon, threshold1, threshold2)-lambda2*GAP1(GAPstart1, GAPstop1)*W)*dt
: Limit for extreme large weight changes
if (fabs(dW_ampa) > maxChange) {
if (dW_ampa < 0) {
dW_ampa = -1*maxChange
} else {
dW_ampa = maxChange
}
}
:Normalize the weight change
normW = (W-Wmin)/(Wmax-Wmin)
if (dW_ampa < 0) {
scaleW = sqrt(fabs(normW))
} else {
scaleW = sqrt(fabs(1.0-normW))
}
W = W + dW_ampa*scaleW
:Weight value limits
if (W > Wmax) {
W = Wmax
} else if (W < Wmin) {
W = Wmin
}
g_nmda = gbar_nmda*r_nmda
inmda = W_nmda*g_nmda*(v - Erev_nmda)*sfunc(v)
g_ampa = gbar_ampa*r_ampa
iampa = W*g_ampa*(v - Erev_ampa)
ICan = P0n*g_nmda*(v - eca)*sfunc(v)
ICaa = P0a*W*g_ampa*(v-eca)/initW
Icatotal = ICan + ICaa
capoolcon'= -fCan*Afactor*Icatotal + (Cainf-capoolcon)/tauCa
}
NET_RECEIVE(dummy_weight) {
t0 = t
}
:::::::::::: FUNCTIONs and PROCEDUREs ::::::::::::
FUNCTION sfunc (v (mV)) {
UNITSOFF
sfunc = 1/(1+0.33*exp(-0.06*v))
UNITSON
}
FUNCTION eta(Cani (mM)) {
LOCAL taulearn, P1, P2, P4, Cacon
P1 = 0.1
P2 = P1*1e-4
P4 = 1
Cacon = Cani*1e3
taulearn = P1/(P2+Cacon*Cacon*Cacon)+P4
eta = 1/taulearn*0.001
}
FUNCTION omega(Cani (mM), threshold1 (uM), threshold2 (uM)) {
LOCAL r, mid, Cacon
Cacon = Cani*1e3
r = (threshold2-threshold1)/2
mid = (threshold1+threshold2)/2
if (Cacon <= threshold1) { omega = 0}
else if (Cacon >= threshold2) { omega = 1/(1+50*exp(-50*(Cacon-threshold2)))}
else {omega = -sqrt(r*r-(Cacon-mid)*(Cacon-mid))}
}
FUNCTION GAP1(GAPstart1 (ms), GAPstop1 (ms)) {
LOCAL s
if (t <= GAPstart1) { GAP1 = 1}
else if (t >= GAPstart1 && t <= GAPstop1) {GAP1 = 1} : During the Gap, apply lamda2*2
else { GAP1 = 1}
}