#This script is used to carry out neuron simulations described in
#Knox AT, Thompson CH, Scott D, Abramova TV, Stieve B, Freeman A, George AL Jr. Genotype-function-phenotype correlations for SCN1A variants identified by clinical genetic testing. Ann Clin Transl Neurol. 2025 Mar;12(3):499-511. doi: 10.1002/acn3.52297. Epub 2025 Jan 21. PMID: 39838578; PMCID: PMC11920720.
#The original PV+ Interneuron model on which this model is based can be found at https://modeldb.science/264834 and is described in the publication
#Berecki G, Bryson A, Terhag J, Maljevic S, Gazina EV, Hill SL, Petrou S. SCN1A gain of function in early infantile encephalopathy. Ann Neurol. 2019 Apr;85(4):514-525. doi: 10.1002/ana.25438. Epub 2019 Mar 7. PMID: 30779207.
#Written by Andrew Knox
from netpyne import specs, sim
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import pandas as pd
import random
import sys
import os
import seaborn as sns
from scipy import stats
#todo: fix sloppy interchangable use of g and gid
if len(sys.argv) > 1:
seed = sys.argv[1]
else:
seed = 1 #default seed
eiratio = 3.0
epsp_rate = 40.0
sec_to_stim = 'soma_0'
sim_duration = 200.0
record_sec = 'soma_0'
putInTopDirectory = True
stimulation_paradigm = 'epspipspsoma' #options iclampsoma, epspsoma, epspipspsoma,epspipspdendrites
netParams = specs.NetParams()
simConfig = specs.SimConfig()
#setup neurons
netParams.popParams['WT'] = {
"cellType": "INT-WT",
"numCells":1,
"xnormRange":[0,1],
"znormRange":[0,1],
"cellModel":"INT3D"
}
netParams.popParams['I1356M'] = {
"cellType": "INT-I1356M",
"numCells": 1,
"xnormRange":[1.5,2.5],
"znormRange":[1.5,2.5],
"cellModel":"INT3D"
}
netParams.popParams['L479P'] = {
"cellType": "INT-L479P",
"numCells": 1,
"xnormRange":[4,5],
"znormRange":[4,5],
"cellModel":"INT3D"
}
netParams.popParams['KO'] = {
"cellType": "INT-KO",
"numCells": 1,
"xnormRange":[7,8],
"znormRange":[7,8],
"cellModel":"INT3D"
}
netParams.importCellParams(
label='INT-WT', #previously interneuron_hoc
conds={'cellType': 'INT-WT','cellModel':'INT3D'},
fileName='PV_interneuron.hoc',
cellName="BC")
netParams.importCellParams(
label='INT-I1356M', #'interneuron_I1356_hoc',
conds={'cellType': 'INT-I1356M','cellModel':'INT3D'},
fileName='PV_interneuron.hoc',
cellName="BC")
netParams.importCellParams(
label='INT-L479P', #'interneuron_L479P_hoc',
conds={'cellType': 'INT-L479P','cellModel':'INT3D'},
fileName='PV_interneuron.hoc',
cellName="BC")
netParams.importCellParams(
label='INT-KO', #'interneuron_KO_hoc',
conds={'cellType': 'INT-KO','cellModel':'INT3D'},
fileName='PV_interneuron.hoc',
cellName="BC")
netParams.defaultThreshold = 0.0
netParams.synMechParams['AMPA'] = {
"mod": "Exp2Syn",
"tau1": 0.5,
"tau2": 2.4,
"e": 0
}
netParams.synMechParams['GABA'] = {
"mod": "Exp2Syn",
"tau1": 1.0,
"tau2": 7.0,
"e": -70
}
#setup network
simConfig.duration = sim_duration
simConfig.dt = 0.1
simConfig.hParams = {
"celsius": 6.3,
"v_init": -65.0,
"clamp_resist": 0.001
}
simConfig.recordCells = [
0,
1,
2,
3
]
simConfig.recordTraces = {
"V_soma": {
"sec": record_sec,
"loc": 0.5,
"var": "v"
}
}
simConfig.recordStim = True
#create network
sim.create(netParams = netParams, simConfig = simConfig)
record_gids = sim.cfg.recordCells
sectionlist = sim.net.cells[0].secs.keys()
dendlist = [s for s in sectionlist if "dend" in s]
somalist = [s for s in sectionlist if "soma" in s]
axonlist = [s for s in sectionlist if "axon" in s]
epspid='0'
ipspid='0'
simid='0'
secs_to_stim_epsp = random.sample(dendlist,6)
secs_to_stim_ipsp = random.sample(dendlist,6)
all_stim_secs = secs_to_stim_epsp + secs_to_stim_ipsp
# code to determine whether excitatory or inhibitory synapses are closer to soma, or whether it's a mixed picture
def updateNodeType(neuron, node, child, node_status_dict, all_stim_secs):
#print("node:",node)
if node in all_stim_secs or node == 'soma_0':
return node_status_dict
n_status = node_status_dict[node]
c_status = node_status_dict[child]
if n_status == 'M':
return node_status_dict
elif n_status == 'none':
node_status_dict[node] = c_status
elif (n_status == 'I' and c_status == 'E') or (n_status == 'E' and c_status == 'I') or c_status == 'M':
node_status_dict[node] = 'M'
parent = neuron.secs[node].topol['parentSec']
#print("call", parent, node, node_status_dict)
updateNodeType(neuron, parent, node, node_status_dict, all_stim_secs)
return node_status_dict
node_status_dict = {}
for d in dendlist:
node_status_dict[d] = 'none'
for s in secs_to_stim_epsp:
node_status_dict[s] = 'E'
for s in secs_to_stim_ipsp:
node_status_dict[s] = 'I'
for sec in all_stim_secs:
parent = sim.net.cells[0].secs[sec].topol['parentSec']
print(parent)
print("nsd:",node_status_dict)
node_status_dict = updateNodeType(sim.net.cells[0],parent,sec,node_status_dict,all_stim_secs)
print("nsda:",node_status_dict)
top_sec_list = []
for sec in dendlist:
if sim.net.cells[0].secs[sec].topol['parentSec'] == 'soma_0':
top_sec_list.append(sec)
top_sec_exc_list = []
syn_exc_rating = 0
for sec in top_sec_list:
if node_status_dict[sec] == 'E':
top_sec_exc_list.append((sec,'E'))
syn_exc_rating += 1
elif node_status_dict[sec] == 'I':
top_sec_exc_list.append((sec,'I'))
syn_exc_rating -= 1
elif node_status_dict[sec] == 'M':
top_sec_exc_list.append((sec,'M'))
syn_exc_rating += 0.5
else:
top_sec_exc_list.append((sec,'none'))
#print("top:",top_sec_exc_list)
#print("Rating:",syn_exc_rating)
syn_dist_rating = 0
for sec in secs_to_stim_epsp:
parent = sim.net.cells[0].secs[sec].topol['parentSec']
parent_list = []
parent_list.append(parent)
while parent != 'soma_0':
parent = sim.net.cells[0].secs[parent].topol['parentSec']
parent_list.append(parent)
syn_dist_rating += len(parent_list)
for sec in secs_to_stim_ipsp:
parent = sim.net.cells[0].secs[sec].topol['parentSec']
parent_list = []
parent_list.append(parent)
while parent != 'soma_0':
parent = sim.net.cells[0].secs[parent].topol['parentSec']
parent_list.append(parent)
syn_dist_rating -= len(parent_list)
#set up cell stimulation based on the chosen paradigm (iclamp vs epsp vs ipsp, dendrites vs soma
for g,gid in enumerate(record_gids):
cellPop = sim.net.cells[gid].tags['pop']
print("pop:",cellPop)
cellType = sim.net.cells[gid].tags['cellType']
netParams.stimSourceParams['IClamp_'+str(gid)] = { "type": "IClamp", "del": 20, "dur": sim_duration-20, "amp": 0.1 }
netParams.stimSourceParams['EPSP_'+str(gid)] = { "type": "NetStim", "noise": 0.2, "start": 20, "rate": 40, "seed": int(seed) }
netParams.stimSourceParams['IPSP_'+str(gid)] = { "type": "NetStim", "noise": 0.2, "start": 20, "rate": epsp_rate / eiratio, "seed": 20 }
if stimulation_paradigm == 'iclampsoma':
#this whole schema is built around the premise that there is one of each cell type whilch has its own stimultion
netParams.stimTargetParams['IClamp->'+str(gid)] = {"conds":{"pop":cellPop,"cellType":cellType},"sec":sec_to_stim,"loc": 0.5,"source":'IClamp_'+str(gid)}
elif stimulation_paradigm == 'epspsoma':
netParams.stimTargetParams['EPSP->'+str(gid)] = {"source":"EPSP_"+str(gid),"conds":{"pop":cellPop,"cellType":cellType},"sec":sec_to_stim,"synMech":"AMPA","weight": 0.015}
elif stimulation_paradigm == 'epspipspsoma':
netParams.stimTargetParams['EPSP->'+str(gid)] = {"source":"EPSP_"+str(gid),"conds":{"pop":cellPop,"cellType":cellType},"sec":sec_to_stim,"synMech":"AMPA","weight": 0.015}
netParams.stimTargetParams['IPSP->'+str(gid)] = {"source":"IPSP_"+str(gid),"conds":{"pop":cellPop,"cellType":cellType},"sec":sec_to_stim,"synMech":"GABA","weight": 0.015}
elif stimulation_paradigm == 'epspipspsoma' or stimulation_paradigm == 'epspipspdendrites':
for s,sec in enumerate(secs_to_stim_epsp):
#add stims to every layer
netParams.stimSourceParams['EPSP_'+str(gid)+'_'+sec] = { "type": "NetStim", "rate": epsp_rate/1000, "noise": 0.2, "start":1,"seed":s }
netParams.stimTargetParams['EPSP->'+str(gid)+'_'+sec] = {"source":"EPSP_"+str(gid)+'_'+sec,"conds":{"pop":cellPop,"cellType":cellType},"sec":sec,"synMech":"AMPA","weight": 0.015,"delay":5}
for s,sec in enumerate(secs_to_stim_ipsp):
netParams.stimSourceParams['IPSP_'+str(gid)+'_'+sec] = { "type": "NetStim", "rate": epsp_rate / eiratio/1000, "noise": 0.2, "start": 1,"seed":s+1000 }
netParams.stimTargetParams['IPSP->'+str(gid)+'_'+sec] = {"source":"IPSP_"+str(gid)+'_'+sec,"conds":{"pop":cellPop,"cellType":cellType},"sec":sec,"synMech":"GABA","weight": 0.015,"delay":5}
sim.create(netParams = netParams, simConfig = simConfig)
if stimulation_paradigm == 'epspipspdendrites':
print("epsp stim:",secs_to_stim_epsp)
print("ipsp stim:",secs_to_stim_ipsp)
epspid = '_'.join([x.split('_')[1] for x in secs_to_stim_epsp])
ipspid = '_'.join([x.split('_')[1] for x in secs_to_stim_ipsp])
simid = '_'.join([epspid,ipspid])
#set variant values - only sets types listed below
for g,gid in enumerate(record_gids):
if not sim.net.cells[gid].tags["cellType"] in ["INT-WT","INT-I1356M","INT-L479P","INT-KO"]:
continue
sectionlist = sim.net.cells[gid].secs.keys()
cell_type = sim.net.cells[gid].tags["cellType"]
dendlist = [s for s in sectionlist if "dend" in s]
somalist = [s for s in sectionlist if "soma" in s]
axonlist = [s for s in sectionlist if "axon" in s]
secs_to_modify = dendlist.copy()
secs_to_modify.extend(somalist)
secs_to_modify.extend(axonlist)
#changes in parameters for variant. First row are parameter names, other rows are paraemters. conductance and slopes (ms,hs) are multipliers, mh is an absolute shift
data = {'name':['gNav11bar','mh','ms','hs','gNap_Et2bar'],
'INT-WT':[1,0,1,1,1],
'INT-I1356M':[0.56,-3.24,1.15,0.95,1],
'INT-L479P':[1,0,1,1,0.6],
'INT-KO':[0,0,1,1,1]}
param_df = pd.DataFrame(data)
for index, row in param_df.iterrows():
for s,sec in enumerate(secs_to_modify):
if row['name'] == 'gNap_Et2bar':
paramVal = sim.net.cells[gid].secs[sec]['mechs']['Nap_Et2'][row['name']]
elif row['name'] == 'gNav11bar':
paramVal = sim.net.cells[gid].secs[sec]['mechs']['Nav11'][row['name']]
else:
paramVal = sim.net.cells[gid].secs[sec]['mechs']['Nav11var'][row['name']]
if paramVal:
if row['name'] == 'mh':
sim.net.modifyCells({'conds':{'cellType':cell_type},'secs':{sec:{'mechs':{'Nav11var':{row['name']:paramVal + row[cell_type]}}}}})
elif row['name'] == 'gNav11bar':
#set the variant conductance
sim.net.modifyCells({'conds':{'cellType':cell_type},'secs':{sec:{'mechs':{'Nav11var':{'gNav11bar':paramVal * 0.5 * row[cell_type]}}}}})
#we also have to set the non-variant Nav11 conductance to 50%, the original code allowed looking at different percentages of each
sim.net.modifyCells({'conds':{'cellType':cell_type},'secs':{sec:{'mechs':{'Nav11':{'gNav11bar':paramVal * 0.5}}}}})
elif row['name'] == 'gNap_Et2bar':
sim.net.modifyCells({'conds':{'cellType':cell_type},'secs':{sec:{'mechs':{'Nap_Et2':{row['name']:paramVal * row[cell_type]}}}}})
else:
sim.net.modifyCells({'conds':{'cellType':cell_type},'secs':{sec:{'mechs':{'Nav11var':{row['name']:paramVal * row[cell_type]}}}}})
fig = plt.figure(figsize=(7.33,6.6),dpi=900) #15,9
subfigs = fig.subfigures(2,1,height_ratios=[2,1])
axs_left = subfigs[0].subplots(len(record_gids),1)
results_dict = {new_list: [] for new_list in record_gids}
results_firstspike_dict = {}
results_firstdepoblock_dict = {}
#now set up everything for the run of simulations
#assuming the transition for the first spike is between 0 and initval
if stimulation_paradigm == 'iclampsoma':
stopstepsize = 0.0001
maxvaltotest = 10
else:
stopstepsize = .001
maxvaltotest = 10000
initval = maxvaltotest
maxval = {}
minval = {}
stepsize = {}
testval = {}
numberspikes = {}
lastnumberspikes = {}
maxfreq = {}
maxnumberspikes = {}
firstspike = {}
depofreq = {}
firstRun = {}
dealWithZeroStart = {}
for g,gid in enumerate(record_gids):
maxval[g] = initval
minval[g] = 0
stepsize[g] = (maxval[g] - minval[g]) / 2
testval[g] = initval
lastnumberspikes[g] = 1
maxfreq[g] = 0 #freq at which the number of spikes is the highest
maxnumberspikes[g] = 1
firstspike[g] = -1
firstRun[g] = True
dealWithZeroStart[g] = False
#first find the point at which spikes start...
#here, we know that stepsizes for each neuron are the same, so we can just use the first...
while max(stepsize.values()) > stopstepsize:
#find the next test value for each neuron
for g,gid in enumerate(record_gids):
if lastnumberspikes[g] >= maxnumberspikes[g]:
maxnumberspikes[g] = lastnumberspikes[g]
maxfreq[g] = testval[g]
if lastnumberspikes[g] > 0 or dealWithZeroStart[g]:
testval[g] = testval[g] - stepsize[g]
else:
testval[g] = testval[g] + stepsize[g]
stepsize[g] /= 2
testval[g] = np.round(testval[g],10)
#set the next test value based on the stimulation paradigm
if stimulation_paradigm == 'iclampsoma':
sim.net.modifyStims({'conds':{'source':'IClamp_'+str(gid)},'amp':testval[g]})
elif stimulation_paradigm == 'epspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':testval[g]/1000})
elif stimulation_paradigm == 'epspipspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':testval[g]/1000})
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)},'rate':testval[g]/eiratio/1000})
elif stimulation_paradigm == 'epspipspsoma' or stimulation_paradigm == 'epspipspdendrites':
for sec in secs_to_stim_epsp:
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)+'_'+sec},'rate':testval[g]/1000})
for sec in secs_to_stim_ipsp:
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)+'_'+sec},'rate':testval[g]/eiratio/1000})
sim.simulate()
sim.analyze()
data = {}
for g,gid in enumerate(record_gids):
counts = np.unique(sim.allSimData['spkid'],return_counts=True)
if np.any(counts) and gid in counts[0]:
index = np.where(counts[0]==gid)
#add tuple (testval, numspikes) for cell gid
lastnumberspikes[g] = counts[1][index][0]
if firstspike[g] == -1 or testval[g] < firstspike[g]:
firstspike[g] = testval[g]
results_dict[gid].append((testval[g],lastnumberspikes[g]))
else:
lastnumberspikes[g] = 0
results_dict[gid].append((testval[g],0))
data[g] = sim.allSimData['V_soma']['cell_'+str(gid)]
for d in range(len(data[g])):
data[g][d] = min(data[g][d],70)
#deal with boundary case for very inhibited stimulation patterns
if firstRun[g]:
firstRun[g] = False
if lastnumberspikes[g] == 0:
dealWithZeroStart[g] = True
if dealWithZeroStart[g]:
if lastnumberspikes[g] > 0:
dealWithZeroStart[g] = False
#now that we've found the first spike stimulus value, plot it for each neuron
for g,gid in enumerate(record_gids):
times = np.linspace(0,sim.cfg.duration,len(data[g]))
roundval = 2
if stimulation_paradigm == 'iclampsoma':
roundval = 4
axs_left[g].plot(times,data[g],label='First spike at '+str(np.round(testval[g],roundval))+' Hz')
if g==len(record_gids)-1:
axs_left[g].set_xlabel("Time (ms)")
else:
plt.setp(axs_left[g].get_xticklabels(), visible=False)
axs_left[g].set_yticks([-50,0])
axs_left[g].title.set_text(sim.net.cells[gid].tags['pop'])
axs_left[g].legend(loc='center left',bbox_to_anchor=(1.0,0.5))
results_firstspike_dict[gid] = firstspike[g]
numberspikes[g] = 1
testval[g] = maxfreq[g]
numberspikes[g] = maxnumberspikes[g]
#next, find a point beyond the depolarization block transition
while min(stepsize.values()) < maxvaltotest / 2:
for g,gid in enumerate(record_gids):
lastnumberspikes[g] = numberspikes[g]
if numberspikes[g] >= maxnumberspikes[g]:
maxnumberspikes[g] = numberspikes[g]
maxfreq[g] = testval[g]
stepsize[g] *= 2
testval[g] = testval[g] + stepsize[g]
#set the next test value based on the stimulation paradigm
if stimulation_paradigm == 'iclampsoma':
sim.net.modifyStims({'conds':{'source':'IClamp_'+str(gid)},'amp':testval[g]})
elif stimulation_paradigm == 'epspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':testval[g]/1000})
elif stimulation_paradigm == 'epspipspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':testval[g]/1000})
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)},'rate':testval[g]/eiratio/1000})
elif stimulation_paradigm == 'epspipspsoma' or stimulation_paradigm == 'epspipspdendrites':
for sec in secs_to_stim_epsp:
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)+'_'+sec},'rate':testval[g]/1000})
for sec in secs_to_stim_ipsp:
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)+'_'+sec},'rate':testval[g]/eiratio/1000})
sim.simulate()
sim.analyze()
data = {}
for g,gid in enumerate(record_gids):
counts = np.unique(sim.allSimData['spkid'],return_counts=True)
if np.any(counts) and gid in counts[0]:
index = np.where(counts[0]==gid)
#add tuple (testval, numspikes) for cell gid
numberspikes[g] = counts[1][index][0]
results_dict[gid].append((testval[g],numberspikes[g]))
else:
numberspikes[g] = 0
results_dict[gid].append((testval[g],0))
data[g] = sim.allSimData['V_soma']['cell_'+str(gid)]
for d in range(len(data[g])):
data[g][d] = min(data[g][d],70)
depofreq[g] = testval[g]
#then do 10 fixed points
testvals = np.array([1,5,10,30,50,100,150,200,250,300])
testvaluearray = np.zeros((len(record_gids),len(testvals)))
for g,gid in enumerate(record_gids):
testvaluearray[g,:] = np.round(testvals,2)
#iterate over each column, which is a set of stimulation values, one for each neuron
for vals in testvaluearray.T:
for g,gid in enumerate(record_gids):
if stimulation_paradigm == 'iclampsoma':
sim.net.modifyStims({'conds':{'source':'IClamp_'+str(gid)},'amp':vals[g]})
elif stimulation_paradigm == 'epspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':vals[g]/1000})
elif stimulation_paradigm == 'epspipspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':vals[g]/1000})
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)},'rate':vals[g]/eiratio/1000})
elif stimulation_paradigm == 'epspipspsoma' or stimulation_paradigm == 'epspipspdendrites':
for sec in secs_to_stim_epsp:
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)+'_'+sec},'rate':vals[g]/1000})
for sec in secs_to_stim_ipsp:
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)+'_'+sec},'rate':vals[g]/eiratio/1000})
sim.simulate()
sim.analyze()
for g,gid in enumerate(record_gids):
counts = np.unique(sim.allSimData['spkid'],return_counts=True)
if np.any(counts) and gid in counts[0]:
index = np.where(counts[0]==gid)
#add tuple (testval, numspikes) for cell gid
numberspikes[g] = counts[1][index][0]
results_dict[gid].append((vals[g],numberspikes[g]))
else:
numberspikes[g] = 0
results_dict[gid].append((vals[g],0))
data[g] = sim.allSimData['V_soma']['cell_'+str(gid)]
for d in range(len(data[g])):
data[g][d] = min(data[g][d],70)
if numberspikes[g] >= maxnumberspikes[g]:
maxnumberspikes[g] = numberspikes[g]
maxfreq[g] = vals[g]
#Finally, find the depolarization block transition (look between the point beyond (testval) and the max eifreq identified (maxfreq)
#here we have different stepsizes for each neuron...
for g,gid in enumerate(record_gids):
maxval[g] = testval[g]
minval[g] = maxfreq[g]
stepsize[g] = (maxval[g] - minval[g]) / 2
while max(stepsize.values()) > stopstepsize:
for g,gid in enumerate(record_gids):
if numberspikes[g] > maxnumberspikes[g]:
maxnumberspikes[g] = numberspikes[g] #this is probably not good if we're here
maxfreq[g]= testval[g]
testval[g] = testval[g] + stepsize[g]
else:
if testval[g] < maxfreq[g]:
testval[g] = testval[g] + stepsize[g]
else:
testval[g] = testval[g] - stepsize[g]
stepsize[g] /= 2
testval[g] = np.round(testval[g],10)
if stimulation_paradigm == 'iclampsoma':
sim.net.modifyStims({'conds':{'source':'IClamp_'+str(gid)},'amp':testval[g]})
elif stimulation_paradigm == 'epspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':testval[g]/1000})
elif stimulation_paradigm == 'epspipspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':testval[g]/1000})
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)},'rate':testval[g]/eiratio/1000})
elif stimulation_paradigm == 'epspipspsoma' or stimulation_paradigm == 'epspipspdendrites':
for sec in secs_to_stim_epsp:
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)+'_'+sec},'rate':testval[g]/1000})
for sec in secs_to_stim_ipsp:
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)+'_'+sec},'rate':testval[g]/eiratio/1000})
sim.simulate()
sim.analyze()
for g,gid in enumerate(record_gids):
counts = np.unique(sim.allSimData['spkid'],return_counts=True)
if np.any(counts) and gid in counts[0]:
index = np.where(counts[0]==gid)
#add tuple (testval, numspikes) for cell gid
numberspikes[g] = counts[1][index][0]
results_dict[gid].append((testval[g],numberspikes[g]))
else:
numberspikes[g] = 0
results_dict[gid].append((testval[g],0))
data[g] = sim.allSimData['V_soma']['cell_'+str(gid)]
for d in range(len(data[g])):
data[g][d] = min(data[g][d],70)
for g,gid in enumerate(record_gids):
results_firstdepoblock_dict[gid] = testval[g]
#plot max firing rate
times = np.linspace(0,sim.cfg.duration,len(data[g]))
if stimulation_paradigm == 'iclampsoma':
axs_left[g].plot(times,data[g],label='Most spikes at '+str(np.round(testval[g],4))+' Hz')
else:
axs_left[g].plot(times,data[g],label='Most spikes at '+str(int(testval[g]))+' Hz')
axs_left[g].set_yticks([-50,0])
axs_left[g].title.set_text(sim.net.cells[gid].tags['pop'])
axs_left[g].legend(loc='center left',bbox_to_anchor=(1.0,0.5))
#plot depo block
for g,gid in enumerate(record_gids):
if stimulation_paradigm == 'iclampsoma':
sim.net.modifyStims({'conds':{'source':'IClamp_'+str(gid)},'amp':depofreq[g]})
elif stimulation_paradigm == 'epspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':depofreq[g]/1000})
elif stimulation_paradigm == 'epspipspsoma':
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)},'rate':depofreq[g]/1000})
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)},'rate':depofreq[g]/eiratio/1000})
elif stimulation_paradigm == 'epspipspsoma' or stimulation_paradigm == 'epspipspdendrites':
for sec in secs_to_stim_epsp:
sim.net.modifyStims({'conds':{'source':'EPSP_'+str(gid)+'_'+sec},'rate':depofreq[g]/1000})
for sec in secs_to_stim_ipsp:
sim.net.modifyStims({'conds':{'source':'IPSP_'+str(gid)+'_'+sec},'rate':depofreq[g]/eiratio/1000})
sim.simulate()
sim.analyze()
data[g] = sim.allSimData['V_soma']['cell_'+str(gid)]
times = np.linspace(0,sim.cfg.duration,len(data[g]))
if stimulation_paradigm == 'iclampsoma':
axs_left[g].plot(times,data[g],label='Max EPSP tested: '+str(np.round(depofreq[g],4))+' Hz')
else:
axs_left[g].plot(times,data[g],label='Max EPSP tested: '+str(int(depofreq[g]))+' Hz')
axs_left[g].set_yticks([-50,0])
axs_left[g].legend(loc='center left',bbox_to_anchor=(1.0,0.5))
#write data to excel
summary_df = pd.DataFrame(index=record_gids,columns=["cell type","first spike","first depolarization block","epsp_compartments","ipsp_compartments", "synapse stim arrangement type","synapse stim rating","synapse stim distance rating","dendrite stim categorization","randomization seed"])
#generate column names for the data
column_names = []
for i in record_gids:
cell = sim.net.cells[i].tags['cellType']
column_names.append(cell + " freq")
column_names.append(cell + " data")
data_df = pd.DataFrame(columns=column_names)
summary_df.at[0,"epsp_compartments"] = epspid
summary_df.at[0,"ipsp_compartments"] = ipspid
summary_df.at[0,"synapse stim rating"] = syn_exc_rating
summary_df.at[0,"synapse stim distance rating"] = syn_dist_rating
summary_df.at[0,"dendrite stim categorization"] = top_sec_exc_list
summary_df.at[0,"randomization seed"] = seed
outdir = ""
if syn_exc_rating < 0.0:
summary_df.at[0,"synapse stim arrangement type"] = "inhibitory"
outdir = "results_inh/"
elif syn_exc_rating > 2.0:
summary_df.at[0,"synapse stim arrangement type"] = "excitatory"
outdir = "results_exc/"
else:
summary_df.at[0,"synapse stim arrangement type"] = "mixed"
outdir = "results_mix/"
if putInTopDirectory:
outdir = ""
for i in record_gids:
summary_df.at[i,"cell type"] = sim.net.cells[i].tags['cellType']
summary_df.at[i,"first spike"] = results_firstspike_dict[i]
summary_df.at[i,"first depolarization block"] = results_firstdepoblock_dict[i]
#for tup in results_dict[i]:
cell = sim.net.cells[i].tags['cellType']
freqlist = [m for m, n in results_dict[i]]
datalist = [n for m, n in results_dict[i]]
data_df[cell+" freq"] = pd.Series(freqlist)
data_df[cell+" data"] = pd.Series(datalist)
if stimulation_paradigm == 'iclampsoma':
outputxlsxfile = 'output_data_iclamprun.xlsx'
outputpngfile = 'vary_iclamp.png'
elif stimulation_paradigm == 'epspsoma':
outputxlsxfile = 'output_data_epsprun'+str(seed)+'.xlsx'
outputpngfile = 'vary_epsp'+str(seed)+'.png'
elif stimulation_paradigm == 'epspipspsoma':
outputxlsxfile = 'output_data_ei'+str(eiratio)+'_'+str(seed)+'.xlsx'
outputpngfile = 'vary_epsp_ei' + str(eiratio)+'_'+str(seed)+'.png'
else:
outputxlsxfile = 'output_data_ei'+str(eiratio)+'_id_' + simid + '.xlsx'
outputpngfile = 'vary_EPSP_ei' + str(eiratio)+'id_' + simid + '.png'
with pd.ExcelWriter(outdir + outputxlsxfile) as writer:
summary_df.to_excel(writer, sheet_name='Summary')
data_df.to_excel(writer, sheet_name='Data')
maxdepoblock = max(results_firstdepoblock_dict.values())
subfigs[0].text(0.003, 0.5, "Soma membrane potential (mV)", va='center',rotation='vertical')
subfigs[0].text(0.03, 0.96, "A)",fontsize=15)
subfigs[0].text(0.03, 0.73, "B)",fontsize=15)
subfigs[0].text(0.03, 0.51, "C)",fontsize=15)
subfigs[0].text(0.03, 0.29, "D)",fontsize=15)
subfigs[1].text(0.03, 0.98, "E)",fontsize=15)
lastax = len(record_gids)
#plot the summary figure
numspikesplot = subfigs[1].subplots(1,1)
for i in record_gids:
results_dict[i].sort(key = lambda x: x[0])
p = numspikesplot.plot(*zip(*results_dict[i]),marker='o',markersize = 4,alpha = 0.75,label=sim.net.cells[i].tags['pop'])
if results_firstspike_dict[i] >= 0:
numspikesplot.axvline(results_firstspike_dict[i],alpha = 0.75,color = p[-1].get_color())
numspikesplot.axvline(results_firstdepoblock_dict[i],alpha = 0.75,color = p[-1].get_color())
numspikesplot.set_xlabel("EPSP Freqency (Hz)")
numspikesplot.set_ylabel("Number spikes")
if stimulation_paradigm == 'iclampsoma':
numspikesplot.set_xlim([0,1])
else:
numspikesplot.set_xlim([0,min(maxvaltotest,max(600,maxdepoblock * 1.5))])
numspikesplot.legend(loc='upper right')
numspikesplot.set_title("Genetic Variant Effect on Neuronal Firing",fontweight='bold')
subfigs[0].subplots_adjust(left=.075,right=.6,top=0.95, bottom=0.15,wspace=0.2,hspace=0.4)
subfigs[1].subplots_adjust(left=.075,right=.95,top=0.95,bottom=0.2,wspace=0.1,hspace=0.2)
plt.savefig(outdir + outputpngfile)
if stimulation_paradigm == 'epspipspdendrites':
print("epsp stim:",secs_to_stim_epsp)
print("ipsp stim:",secs_to_stim_ipsp)