//
// Single-compartmental model cell, quick and dirty implementation
//
// In the context of the stimulation of a single cell by a sinusoidal noisy current, this script
// performs the frequency domain analysis.
// It generates a matrix on a file, containing the gain, the phase and the frequency of stimulation.
// You can choose to do many trials for a statistical analysis.
//
// This script is mean to be run under Linux and is parallelized.
//
// by M. Giugliano and V. Delattre(2008)
// Brain Mind Institute, EPFL,
//
load_file("nrngui.hoc") // Loading of the standard GUI controls...
load_file("mylibs/graphs.hoc") // Loading some ad-hoc proc for displaying live traces...
load_file("mylibs/singlecompneuron.hoc") // Loading the model cell template..
load_file("mylibs/IsinunoisyS_proc.hoc") // Loading the procedure for a "sinunoisy" current injection...
load_file("mylibs/myinit.hoc") // Loading some ad-hoc proc for file creation and initialization...
load_file("mylibs/TFparams.hoc") // Settings for the TF...
load_file("mylibs/Functions.hoc") // Loading some had-hoc function: mysin, err...
load_file("mylibs/FDA_proc.hoc") // Loading the procedure for the frequency domain analysis...
load_file("mylibs/SetSeed_proc.hoc") // Loading the Seeding procedure
//------------------------------------------------------------------------------------------------------
access soma // ACCESSING THE CELL THAT IS GOING TO RECEIVE THE STIMULATION
////////////////////////SIMULATION CONTROL////////////////////////////////////////////////////////////////
Nfreq = 51 // Number of frequency to be tested
Ntrials = 15 // Number of repetitions
Ntot = Ntrials * Nfreq // Number of tasks
Vrest = -67 // [mV]
Amp = 0.2 // [pA]Sinusoidal input amplitude
tstart = 0 // [ms]
tau = 2.5 // [ms]
freqmax = 1.16^Nfreq // [Hz]Sinusoidal input maximum frequency
freqmin = 1.16 // [Hz]Sinusoidal input minimum frequency
tstop = Tdelay + T1 + T //Total simulation duration [ms]
t = tstart
vth_wb(0.5) = 0.
finitialize(Vrest)
//////////////////////////OBJECTS DECLARATION/////////////////////////////////////////////////////////////
objref outspikes, indepvar, myhist, fitsine, vec
outspikes = new Vector()
objref result_file1, result_file2
strdef aptime, linear
result_file1 = new File("result/Sresult_s=0.55_m=-0.25.x")
result_file1.wopen()
/////////////////////////// Experimentation //////////////////////////////////////////////////////////////
my_k = 0
my_i = 0
freq = freqmin
mu = -0.25
sigma = 0.55
ccc = 1 // just a counter
for(my_k=0; my_k<= 1; my_k = my_k +1){ // This loops sweeps accross sigmas
for(my_i=0; my_i<= Ntot-1; my_i = my_i+ 1){ // This loops sweeps accross the frequencies
SetSeed() // We want every trace to differ from the others
remainder = my_i % Nfreq // We want Ntrials repetitions of each frequency
freq = freqmin ^ (remainder + 1)
print ccc ,"of ", 2 * Ntot, "simulations completed "
gain = 0
phase = 0
FrequencyDomainAnalysis(freq)
result_file1.aopen() // We append the file
result_file1.printf("%d %d %f %f %f %f\n",my_k,my_i,freq,gain,phase,R0)
ccc = ccc + 1
}
sigma = sigma + 0.3
}
result_file1.close()
printf("The data points of the frequency domain analysis are now available for further analysis and plot!\n")