# Theta neuron network with 50e and 20i cells with all-to-all # connectivity and tonic input to both the e- and i-cells in a # batch format varying across the I_i parameters # # Specifying the low and high values of the range of the parameter par I_ilo=-0.25,I_ihi=0.31 par ind # Equation needed to calculate the specific values of the parameter # based on the low and high values and the step size for the increments !I_i=I_ilo+mod(ind,56)*(I_ihi-I_ilo)/56 # creating auxiliary variable to see what the actual value is aux I_i0=I_i # specify what you want to see in the output files in the order only t,se,I_i0 # # Parameters par I_e=1 par gei=.4,gii=0.15,gee=0.1, gie=2 par tauz=50,gz=.2 par sige=0.5, sigi=.02 par taue=1, taui=3 # #ODEs for e-cells, i-cells and adaptation x[0..49]'=1-cos(x[j])+(1+cos(x[j]))*(I_e-gz*z[j]-gie*si+gee*se+sige*we[j]) z[0..49]'=sd(x[j])-z[j]/tauz y[0..19]'=1-cos(y[j])+(1+cos(y[j]))*(I_i-gii*si+gei*se+sigi*wi[j]) # Synapses se'=sum(0,49)of(sd(shift(x0,i')))/50-se/taue si'=sum(0,19)of(sd(shift(y0,i')))/20-si/taui global 1 x[0..49]-pi {x[j]=-pi} global 1 y[0..19]-pi {y[j]=-pi} # # Initial Conditions x[0..49](0)=ran(1)*2*pi-pi y[0..19](0)=ran(1)*2*pi-pi wiener we[0..49] wiener wi[0..19] sd(x)=exp(-b*(1-cos(x-2.5)))*b par b=100 aux swgt=.8*se+.2*si @ meth=euler, @ total=1400,trans=400,maxstor=1000000 @ dt=0.02,nOut=10 @ xp=t,yp=se,xlo=600,xhi=1200,ylo=0,yhi=.5 # needed for the range set up @ range=1,rangeover=ind,rangelow=0,rangehigh=56,rangestep=56 @ rangereset=yes done