clear all
close all
clc
warning off MATLAB:griddata:DuplicateDataPoints
% BEGIN Initializations of parameters
n=500;
m=1;
N=n*m; %%% Dimensions of output layer (number of place cells)
NofSteps=200; %%% Number of steps
envSize=10000; %%% Size of environment
noiseAmpl=0.03; %%% Amplitude of noise
nNV=1; %%% Number of features we do not see and are predicted by previous
d=8; %%% Number of features
NofRuns=30; %%% Number of runs
ceateHPC=0; %%% 0 - No cells; 1 - All cells; 2 - NonZero Cells
showFig=1;
miu=0.01;
sigma=0.07;
threshold=0.5;
deltat=500;
rand_ampl=deltat*0.20;
border=deltat+rand_ampl;
explorP=0.0;
maxGain=1;
alfa=0.7;
gama=0.7;
weightGain=0.0;
% w=rand(N,d);
% w0=w;
% weightsGenerator
w=(1+exp((rand(N,8)-0.5)/(2*0.20^2))).^-1;
for di=1:8
w(:,di)=w(:,di)-min(w(:,di));
w(:,di)=w(:,di)/max(w(:,di));
end;
totalT=0;
% END Initializations of parameters
% BEGIN Initializations of parameters for odors
nOS=4;
odrSize=100;
g=0.1;
s=15;
a=0.01;
OS(1,:)=[odrSize*a, odrSize*a]+round(randn(1,2)*odrSize*g);
OS(2,:)=[odrSize*a, odrSize*(1-a)]+round(randn(1,2)*odrSize*g);
OS(3,:)=[odrSize*(1-a), odrSize*(1-a)]+round(randn(1,2)*odrSize*g);
OS(4,:)=[odrSize*(1-a), odrSize*a]+round(randn(1,2)*odrSize*g);
[Xodr,Yodr] = meshgrid(1:1:odrSize, 1:1:odrSize);
for kOS=1:nOS
for i=1:length(Xodr)
for j=1:length(Yodr)
sx=s+i+5*sin(0.1*j);
sy=s+j+5*sin(0.1*i);
ODR(i,j,kOS)=exp(-((Xodr(i,j)-OS(kOS,1))^2/(2*sx^2) + (Yodr(i,j)-OS(kOS,2))^2/(2*sy^2)));
end;
end;
end;
for kOS=1:nOS
ODR(:,:,kOS)=ODR(:,:,kOS)/max(max(ODR(:,:,kOS)));
end;
% END Initializations of parameters for odors
%% BEGIN Initializations of parameters for Q-learning
searchTime(1:NofRuns)=-1;
r=0;
weightN=weightGain*rand(1,N);
weightS=weightGain*rand(1,N);
weightE=weightGain*rand(1,N);
weightW=weightGain*rand(1,N);
weights_allN=weightN;
weights_allS=weightS;
weights_allE=weightE;
weights_allW=weightW;
weightNE=weightGain*rand(1,N);
weightNW=weightGain*rand(1,N);
weightSE=weightGain*rand(1,N);
weightSW=weightGain*rand(1,N);
weights_allNE=weightNE;
weights_allNW=weightNW;
weights_allSE=weightSE;
weights_allSW=weightSW;
%% END Initializations of weights for Q-learning
radius=6;
urine=zeros(100,100);
fxl=3000; %%% location of food
fxr=5000;
fyd=6500;
fyu=8500;
if showFig==1
figure('NumberTitle','off','Name', 'Latencies', 'Position', [232 276 560 410])
uimenu('Label','Restart','Callback','navPFQLUv07')
subplot(2,2,3)
axis([0 100 0 100])
hold on
plot([fxl fxl fxr fxr fxl]/100,[fyd fyu fyu fyd fyd]/100,'r-')
end;
for ri=1:NofRuns
M=NofSteps; %%% Size of input data
r=0;
food=0;
i1=1000; %%% pradine x koordinate
i2=1000; %%% pradine y koordinate
i1s=i1;
i2s=i2;
oldX=i1;
oldY=i2;
angle=0;
t=0;
j=0;
nDivData=0;
location=[];
data=[];
cellNumber=[];
rate=[];
kuri=[];
kuri_pries=[];
NS=rand-0.5;
EW=rand-0.5;
NE_SW=rand-0.5;
NW_SE=rand-0.5;
new_dir=0;
old_dir=0;
wb=waitbar(0,'Please wait... Creating SOM.','Position',[20 60 300 50]);
while (t<deltat*NofSteps)&(food==0)
totalT=totalT+1;
j=j+1;
location(j,:)=[i1 i2];
data(j,1:2)=location(j,1:2)/envSize;
if d>=4
data(j,3:4)=1-data(j,1:2);
data(j,5:8)=zeros(1,4);
end;
if d==8
I1=round(i1/100);
I2=round(i2/100);
if I1==0
I1=1;
end;
if I2==0
I2=1;
end;
data(j,5:8)=ODR(I1,I2,1:4);
end;
noise1=[rand(1,4)-0.5]*2*noiseAmpl;
noise2=[rand(1,4)-0.5]*2*noiseAmpl;
if d>=4
data(j,1:4)=data(j,1:4)+data(j,1:4).*noise1;
end;
if d==8
data(j,5:8)=data(j,5:8)+[1-data(j,5:8)].*noise2;
end;
for di=1:8
if data(j,di)<0
data(j,di)=0;
elseif data(j,di)>1
data(j,di)=1;
end;
end;
newX=i1;
newY=i2;
if (newX-oldX)==0 & (newY-oldY)==0
else
if newY-oldY>0
angle=acos((newX-oldX)/sqrt((newX-oldX)^2+(newY-oldY)^2))*(180/pi);
else
angle=360-acos((newX-oldX)/sqrt((newX-oldX)^2+(newY-oldY)^2))*(180/pi);
end;
end;
oldX=newX;
oldY=newY;
if nNV>0 & d>=4
R=[];
if angle<20 | angle>340
R=[1];
elseif angle>=20 & angle<=70
if newX<envSize*0.25 & newY<envSize*0.25
R=[];
else
R=[1 2];
end;
elseif angle>70 & angle<110
R=[2];
elseif angle>=110 & angle<=160
if newX>envSize*0.75 & newY<envSize*0.25
R=[];
else
R=[2 3];
end;
elseif angle>160 & angle<200
R=[3];
elseif angle>=200 & angle<=250
if newX>envSize*0.75 & newY>envSize*0.75
R=[];
else
R=[3 4];
end;
elseif angle>250 & angle<290
R=[4];
elseif angle>=290 & angle<=340
if newX<envSize*0.25 & newY>envSize*0.75
R=[];
else
R=[4 1];
end;
end;
if j>1
data(j,R)=data(j-1,R);
else
data(j,R)=0;
end;
end;
if d==4
data(j,5:8)=data(j,1:4);
end;
%%%BEGIN Looking for smell
ui1=round(i1/100);
ui2=round(i2/100);
if ui1<1
ui1=1;
end;
if ui2<1
ui2=1;
end;
xs=ui1-radius;
if xs<1
xs=1;
end;
xe=ui1+radius;
if xe>100
xe=100;
end;
ys=ui2-radius;
if ys<1
ys=1;
end;
ye=ui2+radius;
if ye>100
ye=100;
end;
Smell=0;
smell_pos=[];
for xi=xs:xe
for yi=ys:ye
if urine(xi,yi)>0
Smell=1;
smell_pos=[smell_pos; xi yi urine(xi,yi)];
smell_pos=sortrows(smell_pos,3);
end;
end;
end;
%%%END Looking for smell
kuri_pries=[];
kuri_pries=kuri;
kuri=[];
v=[];
for i=1:N
v(i)=(sum([data(j,:)-w(i,:)].^2))/8;
rate(j,i)=exp(-(v(i)^2)/(2*sigma^2));
if rate(j,i)>=threshold
kuri=[kuri, i];
end;
end;
[vm vmi]=min(v);
w(vmi,:)=w(vmi,:)+miu*[data(j,:)-w(vmi,:)];
if length(kuri)<1
disp('Cells do no fire...');
end;
% disp(length(kuri))
%%% BEGIN Food finding
if (i1>=fxl)&(i1<=fxr)&(i2>=fyd)&(i2<=fyu)
food=1;
r=1;
end;
%%% END Food finding
%%% BEGIN Motor learning
nkiekis=length(kuri);
if nkiekis~=0
maksimumas=max([mean(weightN(kuri)) mean(weightS(kuri)) mean(weightE(kuri)) mean(weightW(kuri)) mean(weightNE(kuri)) mean(weightNW(kuri)) mean(weightSE(kuri)) mean(weightSW(kuri))]);
vidQ=mean([mean(weightN(kuri)) mean(weightS(kuri)) mean(weightE(kuri)) mean(weightW(kuri)) mean(weightNE(kuri)) mean(weightNW(kuri)) mean(weightSE(kuri)) mean(weightSW(kuri))]);
else
maksimumas=0;
vidQ=0;
end;
maksimumas=maxGain*maksimumas;
% disp(maksimumas)
skiekis=length(kuri_pries);
pos_dir=[];
pos_dir=randperm(8);
if i2>i2s & abs(i2-i2s)>rand_ampl & abs(i1-i1s)<=rand_ampl
weightN(kuri_pries)=weightN(kuri_pries)+alfa*(r+gama*maksimumas-weightN(kuri_pries));
NS=1;
EW=0;
NE_SW=0;
NW_SE=0;
old_dir=1;
pos_dir(2)=0;
elseif i2<i2s & abs(i2-i2s)>rand_ampl & abs(i1-i1s)<=rand_ampl
weightS(kuri_pries)=weightS(kuri_pries)+alfa*(r+gama*maksimumas-weightS(kuri_pries));
NS=-1;
EW=0;
NE_SW=0;
NW_SE=0;
old_dir=-1;
pos_dir(1)=0;
elseif i1>i1s & abs(i1-i1s)>rand_ampl & abs(i2-i2s)<=rand_ampl
weightE(kuri_pries)=weightE(kuri_pries)+alfa*(r+gama*maksimumas-weightE(kuri_pries));
NS=0;
EW=1;
NE_SW=0;
NW_SE=0;
old_dir=2;
pos_dir(4)=0;
elseif i1<i1s & abs(i1-i1s)>rand_ampl & abs(i2-i2s)<=rand_ampl
weightW(kuri_pries)=weightW(kuri_pries)+alfa*(r+gama*maksimumas-weightW(kuri_pries));
NS=0;
EW=-1;
NE_SW=0;
NW_SE=0;
old_dir=-2;
pos_dir(3)=0;
elseif (i1>i1s) & (i2>i2s) & abs(i1-i1s)>rand_ampl & abs(i2-i2s)>rand_ampl
weightNE(kuri_pries)=weightNE(kuri_pries)+alfa*(r+gama*maksimumas-weightNE(kuri_pries));
NS=0;
EW=0;
NE_SW=1;
NW_SE=0;
old_dir=3;
pos_dir(6)=0;
elseif (i1<i1s) & (i2<i2s) & abs(i1-i1s)>rand_ampl & abs(i2-i2s)>rand_ampl
weightSW(kuri_pries)=weightSW(kuri_pries)+alfa*(r+gama*maksimumas-weightSW(kuri_pries));
NS=0;
EW=0;
NE_SW=-1;
NW_SE=0;
old_dir=-3;
pos_dir(5)=0;
elseif (i1<i1s) & (i2>i2s) & abs(i1-i1s)>rand_ampl & abs(i2-i2s)>rand_ampl
weightNW(kuri_pries)=weightNW(kuri_pries)+alfa*(r+gama*maksimumas-weightNW(kuri_pries));
NS=0;
EW=0;
NE_SW=0;
NW_SE=1;
old_dir=4;
pos_dir(8)=0;
elseif (i1>i1s) & (i2<i2s) & abs(i1-i1s)>rand_ampl & abs(i2-i2s)>rand_ampl
weightSE(kuri_pries)=weightSE(kuri_pries)+alfa*(r+gama*maksimumas-weightSE(kuri_pries));
NS=0;
EW=0;
NE_SW=0;
NW_SE=-1;
old_dir=-4;
pos_dir(7)=0;
else
if j>1
disp('Could not specify direction...');
end;
end;
if nkiekis~=0
maxMax=max([max(weightN(kuri)) max(weightS(kuri)) max(weightE(kuri))...
max(weightW(kuri)) max(weightNE(kuri)) max(weightNW(kuri))...
max(weightSE(kuri)) max(weightSW(kuri))]);
else
maxMax=0;
end;
if r==1
if urine(ui1,ui2)<1
urine(ui1,ui2)=urine(ui1,ui2)+0.005;
end;
end;
if Smell==1 & maksimumas/vidQ>1.50
if urine(ui1,ui2)<1
urine(ui1,ui2)=urine(ui1,ui2)+0.005;
end;
end;
if showFig==1
figure(findobj('Name','Latencies'))
subplot(2,2,3)
hold on
if urine(ui1,ui2)>0
ms=10+urine(ui1,ui2)*100;
if ms>25
ms=25;
end;
plot(ui1,ui2,'g.','Markersize',ms)
end;
end;
% saving weights
% weights_allN=[weights_allN;weightN];
% weights_allS=[weights_allS;weightS];
% weights_allE=[weights_allE;weightE];
% weights_allW=[weights_allW;weightW];
% weights_allNE=[weights_allNE;weightNE];
% weights_allNW=[weights_allNW;weightNW];
% weights_allSE=[weights_allSE;weightSE];
% weights_allSW=[weights_allSW;weightSW];
%%% END Motor learning
if r==0
%%%BEGIN New path
if Smell==1
mI=size(smell_pos,1);
i1n=smell_pos(mI,1)*100;
i2n=smell_pos(mI,2)*100;
if i1n==i1 & i2n==i2 & mI>1
i1n=smell_pos(mI-1,1)*100;
i2n=smell_pos(mI-1,2)*100;
end;
if abs(i1n-i1)<=rand_ampl | abs(i2n-i2)<=rand_ampl
if i2n>i2 & abs(i2n-i2)>rand_ampl
new_dir=1;
elseif i2n<i2 & abs(i2n-i2)>rand_ampl
new_dir=-1;
elseif i1n>i1 & abs(i1n-i1)>rand_ampl
new_dir=2;
elseif i1n<i1 & abs(i1n-i1)>rand_ampl
new_dir=-2;
end;
else
if (i1n>i1) & (i2n>i2)
new_dir=3;
elseif (i1n<i1) & (i2n<i2)
new_dir=-3;
elseif (i1n<i1) & (i2n>i2)
new_dir=4;
elseif (i1n>i1) & (i2n<i2)
new_dir=-4;
end;
end;
else
dwv=0;
dwh=0;
dwne_sw=0;
dwnw_se=0;
dwv=sum([weightN(kuri)-weightS(kuri)]);
dwh=sum([weightE(kuri)-weightW(kuri)]);
dwne_sw=sum([weightNE(kuri)-weightSW(kuri)]);
dwnw_se=sum([weightNW(kuri)-weightSE(kuri)]);
motion(totalT)=3;
if dwv==0 & dwh==0 & dwne_sw==0 & dwnw_se==0
if rand<0.25
dwv=rand-0.5;
dwh=rand-0.5;
dwne_sw=rand-0.5;
dwnw_se=rand-0.5;
else
dwv=NS;
dwh=EW;
dwne_sw=NE_SW;
dwnw_se=NW_SE;
end;
motion(totalT)=0;
else
if rand<0.00 & j>1
dwv=NS;
dwh=EW;
dwne_sw=NE_SW;
dwnw_se=NW_SE;
motion(totalT)=1;
end;
end;
if rand<0.10 %explorP
dwv=rand-0.5;
dwh=rand-0.5;
dwne_sw=rand-0.5;
dwnw_se=rand-0.5;
motion(totalT)=2;
end;
if abs(dwv)>abs(dwh) & abs(dwv)>abs(dwne_sw) & abs(dwv)>abs(dwnw_se)
i1n=i1+(rand-0.5)*2*rand_ampl;
i2n=i2+(deltat+(rand-0.5)*2*rand_ampl)*sign(dwv);
if sign(dwv)>0
new_dir=1;
else
new_dir=-1;
end;
elseif abs(dwh)>abs(dwv) & abs(dwh)>abs(dwne_sw) & abs(dwh)>abs(dwnw_se)
i1n=i1+(deltat+(rand-0.5)*2*rand_ampl)*sign(dwh);
i2n=i2+(rand-0.5)*2*rand_ampl;
if sign(dwh)>0
new_dir=2;
else
new_dir=-2;
end;
elseif abs(dwne_sw)>abs(dwh) & abs(dwne_sw)>abs(dwv) & abs(dwne_sw)>abs(dwnw_se)
i1n=i1+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(dwne_sw);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(dwne_sw);
if sign(dwne_sw)>0
new_dir=3;
else
new_dir=-3;
end;
elseif abs(dwnw_se)>abs(dwh) & abs(dwnw_se)>abs(dwv) & abs(dwnw_se)>abs(dwne_sw)
i1n=i1-(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(dwnw_se);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(dwnw_se);
if sign(dwnw_se)>0
new_dir=4;
else
new_dir=-4;
end;
end;
end;
if old_dir==new_dir*(-1)
if abs(old_dir)==1
i1n=i1+(rand-0.5)*2*rand_ampl;
i2n=i2+(deltat+(rand-0.5)*2*rand_ampl)*sign(old_dir);
elseif abs(old_dir)==2
i1n=i1+(deltat+(rand-0.5)*2*rand_ampl)*sign(old_dir);
i2n=i2+(rand-0.5)*2*rand_ampl;
elseif abs(old_dir)==3
i1n=i1+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(old_dir);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(old_dir);
elseif abs(old_dir)==4
i1n=i1-(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(old_dir);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*sign(old_dir);
end;
end;
out_of_border=0;
% Correction of borders
if i1n<=0 | i1n>=envSize | i2n<=0 | i2n>=envSize
out_of_border=1;
%disp(['out of border ' num2str(totalT)])
if i1<=border & i2<=border
pos_dir([8,2,6,4,7])=0;
elseif i1<=border & i2>border & i2<envSize-border
pos_dir([6,4,7])=0;
elseif i1<=border & i2>=envSize-border
pos_dir([6,4,7,1,5])=0;
elseif i1>border & i1<envSize-border & i2>=envSize-border
pos_dir([7,1,5])=0;
elseif i1>=envSize-border & i2>=envSize-border
pos_dir([7,1,5,3,8])=0;
elseif i1>=envSize-border & i2>border & i2<envSize-border
pos_dir([5,3,8])=0;
elseif i1>=envSize-border & i2<=border
pos_dir([5,3,8,2,6])=0;
elseif i1>border & i1<envSize-border & i2<=border
pos_dir([8,2,6])=0;
end;
end;
if out_of_border==1
[maxV, maxI]=max(pos_dir);
if maxI==1
i1n=i1;
i2n=i2+(deltat+(rand-0.5)*2*rand_ampl)*(1);
elseif maxI==2
i1n=i1;
i2n=i2+(deltat+(rand-0.5)*2*rand_ampl)*(-1);
elseif maxI==3
i1n=i1+(deltat+(rand-0.5)*2*rand_ampl)*(1);
i2n=i2;
elseif maxI==4
i1n=i1+(deltat+(rand-0.5)*2*rand_ampl)*(-1);
i2n=i2;
elseif maxI==5
i1n=i1+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(1);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(1);
elseif maxI==6
i1n=i1+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(-1);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(-1);
elseif maxI==7
i1n=i1-(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(1);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(1);
elseif maxI==8
i1n=i1-(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(-1);
i2n=i2+(deltat/sqrt(2)+(rand-0.5)*2*rand_ampl)*(-1);
end;
end;
i1s=i1;
i2s=i2;
i1=i1n;
i2=i2n;
%%% END New path
end;
t=t+deltat;
waitbar(j/M,wb);
end;
close(wb);
M=j;
% nDivData
% MeanNoActiveCells=length(find(cellNumber~=0))/M
if nDivData==0
searchTime(ri)=M;
else
break;
end;
if showFig==1
figure(findobj('Name','Latencies'))
subplot(2,2,1)
cla
hold on
plot([fxl fxl fxr fxr fxl],[fyd fyu fyu fyd fyd],'r-')
plot(location(:,1),location(:,2))
axis([0 envSize 0 envSize])
subplot(2,2,2)
hold on
stem(ri,searchTime(ri))
set(gca,'xlim',[1 NofRuns])
end;
if ceateHPC==1
createCellsAll;
elseif ceateHPC==2
createCells;
end;
end;
if showFig==1
figure(findobj('Name','Latencies'))
subplot(2,2,4)
mesh(urine')
end;