#!/usr/bin/env python
"""Python script to run cell model"""
"""
/* Copyright (c) 2015 EPFL-BBP, All rights reserved.
THIS SOFTWARE IS PROVIDED BY THE BLUE BRAIN PROJECT ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE BLUE BRAIN PROJECT
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode or send a letter to
Creative Commons, 171 Second Street, Suite 300,
San Francisco, California, 94105, USA.
"""
"""
* @file run.py
* @brief Run simulation using pyneuron
* @author Werner Van Geit @ BBP
* @date 2015
"""
# pylint: disable=C0325, W0212, F0401, W0612, F0401
import os
import neuron
import numpy
import sys
def create_cell():
"""Create the cell model"""
# Load morphology
neuron.h.load_file("morphology.hoc")
# Load biophysics
neuron.h.load_file("biophysics.hoc")
# Load main cell template
neuron.h.load_file("template.hoc")
# Instantiate the cell from the template
print("Loading cell cADpyr231_L6_TPC_L4_117b9dfb71")
cell = neuron.h.cADpyr231_L6_TPC_L4_117b9dfb71(0)
return cell
def create_stimuli(cell, stim_start, stim_end, current_amplitude):
"""Create the stimuli"""
print('Attaching stimulus electrodes')
stimuli = []
iclamp = neuron.h.IClamp(0.5, sec=cell.soma[0])
iclamp.delay = stim_start
iclamp.dur = stim_end - stim_start
iclamp.amp = current_amplitude
print('Setting up step current clamp: '
'amp=%f nA, delay=%f ms, duration=%f ms' %
(iclamp.amp, iclamp.delay, iclamp.dur))
stimuli.append(iclamp)
return stimuli
def create_recordings(cell):
"""Create the recordings"""
print('Attaching recording electrodes')
recordings = {}
recordings['time'] = neuron.h.Vector()
recordings['soma(0.5)'] = neuron.h.Vector()
recordings['time'].record(neuron.h._ref_t, 0.1)
recordings['soma(0.5)'].record(cell.soma[0](0.5)._ref_v, 0.1)
return recordings
def run_RmpRiTau_step(
stim_start,
stim_end,
current_amplitude,
plot_traces=None):
"""Run """
cell = create_cell()
stimuli = create_stimuli(cell, stim_start, stim_end, current_amplitude) # noqa
recordings = create_recordings(cell)
# Overriding default 30s simulation,
neuron.h.tstop = stim_end + stim_start
print(
'Setting simulation time to %.6g ms for the step current' %
neuron.h.tstop)
print('Setting initial voltage to -70 mV')
neuron.h.v_init = -70
neuron.h.stdinit()
neuron.h.dt = 1000
neuron.h.t = -1e9
for _ in range(10):
neuron.h.fadvance()
neuron.h.t = 0
neuron.h.dt = 0.025
neuron.h.frecord_init()
neuron.h.continuerun(3000)
time = numpy.array(recordings['time'])
soma_voltage = numpy.array(recordings['soma(0.5)'])
recordings_dir = 'python_recordings'
soma_voltage_filename = os.path.join(
recordings_dir,
'soma_voltage_RmpRiTau_step.dat')
numpy.savetxt(soma_voltage_filename, zip(time, soma_voltage))
print('Soma voltage for RmpRiTau trace saved to: %s'
% (soma_voltage_filename))
if plot_traces:
import pylab
pylab.figure(facecolor='white')
pylab.plot(recordings['time'], recordings['soma(0.5)'])
pylab.xlabel('time (ms)')
pylab.ylabel('Vm (mV)')
pylab.gcf().canvas.set_window_title('RmpRiTau trace')
return time, soma_voltage, stim_start, stim_end
def init_simulation():
"""Initialise simulation environment"""
neuron.h.load_file("stdrun.hoc")
neuron.h.load_file("import3d.hoc")
print('Loading constants')
neuron.h.load_file('constants.hoc')
def analyse_RmpRiTau_trace(
time,
soma_voltage,
stim_start,
stim_end,
current_amplitude):
"""Analyse the output of the RmpRiTau protocol"""
# Import the eFeature Extraction Library
import efel
# Prepare the trace data
trace = {}
trace['T'] = time
trace['V'] = soma_voltage
trace['stim_start'] = [stim_start]
trace['stim_end'] = [stim_end]
# Calculate the necessary eFeatures
efel_results = efel.getFeatureValues(
[trace],
['voltage_base', 'steady_state_voltage_stimend',
'decay_time_constant_after_stim'])
voltage_base = efel_results[0]['voltage_base'][0]
ss_voltage = efel_results[0]['steady_state_voltage_stimend'][0]
dct = efel_results[0]['decay_time_constant_after_stim'][0]
# Calculate input resistance
input_resistance = float(ss_voltage - voltage_base) / current_amplitude
rmpritau_dict = {}
rmpritau_dict['Rmp'] = '%.6g' % voltage_base
rmpritau_dict['Rmp_Units'] = 'mV'
rmpritau_dict['Rin'] = '%.6g' % input_resistance
rmpritau_dict['Rin_Units'] = 'MOhm'
rmpritau_dict['Tau'] = '%.6g' % dct
rmpritau_dict['Tau_Units'] = 'ms'
print('Resting membrane potential is %s %s' %
(rmpritau_dict['Rmp'], rmpritau_dict['Rmp_Units']))
print('Input resistance is %s %s' %
(rmpritau_dict['Rin'], rmpritau_dict['Rin_Units']))
print('Time constant is %s %s' %
(rmpritau_dict['Tau'], rmpritau_dict['Tau_Units']))
import json
with open('rmp_ri_tau.json', 'w') as rmpritau_json_file:
json.dump(rmpritau_dict, rmpritau_json_file,
sort_keys=True,
indent=4,
separators=(',', ': '))
def main(plot_traces=False):
"""Main"""
# Import matplotlib to plot the traces
if plot_traces:
import matplotlib
matplotlib.rcParams['path.simplify'] = False
init_simulation()
current_amplitude = -0.01
stim_start = 1000
stim_end = 2000
time, soma_voltage, stim_start, stim_end = run_RmpRiTau_step(
stim_start, stim_end, current_amplitude, plot_traces=plot_traces)
analyse_RmpRiTau_trace(
time,
soma_voltage,
stim_start,
stim_end,
current_amplitude)
if plot_traces:
import pylab
pylab.show()
if __name__ == '__main__':
if len(sys.argv) == 1:
main(plot_traces=True)
elif len(sys.argv) == 2 and sys.argv[1] == '--no-plots':
main(plot_traces=False)
else:
raise Exception(
"Script only accepts one argument: --no-plots, not %s" %
str(sys.argv))