import glob
import json
import os

from bmtk.simulator.bionet.pyfunction_cache import add_synapse_model
from neuron import h
import random
import numpy as np

np.random.seed(42)
generators = []

pyrWeight_m = 1
pyrWeight_s = 1

def lognormal(m, s):
        mean = np.log(m) - 0.5 * np.log((s/m)**2+1)
        std = np.sqrt(np.log((s/m)**2 + 1))
        #import pdb; pdb.set_trace()
        return max(np.random.lognormal(mean, std, 1), 0.00000001)

def set_pyr_w(m, s):
    global pyrWeight_m
    global pyrWeight_s
    pyrWeight_m = m
    pyrWeight_s = s

def Bg2Pyr(syn_params, sec_x, sec_id):
    """Create a bg2pyr synapse
    :param syn_params: parameters of a synapse
    :param sec_x: normalized distance along the section
    :param sec_id: target section
    :return: NEURON synapse object
    """

    lsyn = h.bg2pyr(sec_x, sec=sec_id)

    if syn_params.get('initW'):
        lsyn.initW = float(syn_params['initW'])
    if syn_params.get('taun1'):
        lsyn.taun1 = float(syn_params['taun1'])
    if syn_params.get('taun2'):
        lsyn.taun2 = float(syn_params['taun2'])
    if syn_params.get('gNMDAmax'):
        lsyn.gNMDAmax = float(syn_params['gNMDAmax'])
    if syn_params.get('enmda'):
        lsyn.enmda = float(syn_params['enmda'])
    if syn_params.get('taua1'):
        lsyn.taua1 = float(syn_params['taua1'])
    if syn_params.get('taua2'):
        lsyn.taua2 = float(syn_params['taua2'])
    if syn_params.get('gAMPAmax'):
        lsyn.gAMPAmax = float(syn_params['gAMPAmax'])
    if syn_params.get('eampa'):
        lsyn.eampa = float(syn_params['eampa'])
    return lsyn


def bg2pyr(syn_params, xs, secs):
    """Create a list of bg2pyr synapses
    :param syn_params: parameters of a synapse
    :param xs: list of normalized distances along the section
    :param secs: target sections
    :return: list of NEURON synpase objects
    """
    syns = []
    for x, sec in zip(xs, secs):
        syn = Pyr2Pyr(syn_params, x, sec)
        syns.append(syn)
    return syns

def Pyr2Int(syn_params, sec_x, sec_id):
    """Create a pyr2int synapse
    :param syn_params: parameters of a synapse
    :param sec_x: normalized distance along the section
    :param sec_id: target section
    :return: NEURON synapse object
    """

    lsyn = h.pyr2int(sec_x, sec=sec_id)

    if syn_params.get('AlphaTmax_ampa'):
        lsyn.AlphaTmax_ampa = float(syn_params['AlphaTmax_ampa']) # par.x(21)
    if syn_params.get('Beta_ampa'):
        lsyn.Beta_ampa = float(syn_params['Beta_ampa']) # par.x(22)
    if syn_params.get('Cdur_ampa'):
        lsyn.Cdur_ampa = float(syn_params['Cdur_ampa']) # par.x(23)
    if syn_params.get('gbar_ampa'):
        lsyn.gbar_ampa = float(syn_params['gbar_ampa']) # par.x(24)
    if syn_params.get('Erev_ampa'):
        lsyn.Erev_ampa = float(syn_params['Erev_ampa']) # par.x(16)

    if syn_params.get('AlphaTmax_nmda'):
        lsyn.AlphaTmax_nmda = float(syn_params['AlphaTmax_nmda']) # par.x(25)
    if syn_params.get('Beta_nmda'):
        lsyn.Beta_nmda = float(syn_params['Beta_nmda']) # par.x(26)
    if syn_params.get('Cdur_nmda'):
        lsyn.Cdur_nmda = float(syn_params['Cdur_nmda']) # par.x(27)
    if syn_params.get('gbar_nmda'):
        lsyn.gbar_nmda = float(syn_params['gbar_nmda']) # par.x(28)
    if syn_params.get('Erev_nmda'):
        lsyn.Erev_nmda = float(syn_params['Erev_nmda']) # par.x(16)
    
    if syn_params.get('initW'):
        lsyn.initW = float(syn_params['initW']) * random.uniform(0.5,1.0) # par.x(0) * rC.uniform(0.5,1.0)//rand.normal(0.5,1.5) //`rand.repick() 

    if syn_params.get('Wmax'):
        lsyn.Wmax = float(syn_params['Wmax']) * lsyn.initW # par.x(1) * lsyn.initW
    if syn_params.get('Wmin'):
        lsyn.Wmin = float(syn_params['Wmin']) * lsyn.initW # par.x(2) * lsyn.initW
    #delay = float(syn_params['initW']) # par.x(3) + delayDistance
    #lcon = new NetCon(&v(0.5), lsyn, 0, delay, 1)

    if syn_params.get('lambda1'):
        lsyn.lambda1 = float(syn_params['lambda1']) # par.x(6)
    if syn_params.get('lambda2'):
        lsyn.lambda2 = float(syn_params['lambda2']) # par.x(7)
    if syn_params.get('threshold1'):
        lsyn.threshold1 = float(syn_params['threshold1']) # par.x(8)
    if syn_params.get('threshold2'):
        lsyn.threshold2 = float(syn_params['threshold2']) # par.x(9)
    if syn_params.get('tauD1'):
        lsyn.tauD1 = float(syn_params['tauD1']) # par.x(10)
    if syn_params.get('d1'):
        lsyn.d1 = float(syn_params['d1']) # par.x(11)
    if syn_params.get('tauD2'):
        lsyn.tauD2 = float(syn_params['tauD2']) # par.x(12)
    if syn_params.get('d2'):
        lsyn.d2 = float(syn_params['d2']) # par.x(13)
    if syn_params.get('tauF'):
        lsyn.tauF = float(syn_params['tauF']) # par.x(14)
    if syn_params.get('f'):
        lsyn.f = float(syn_params['f']) # par.x(15)

    if syn_params.get('bACH'):
        lsyn.bACH = float(syn_params['bACH']) # par.x(17)
    if syn_params.get('aDA'):
        lsyn.aDA = float(syn_params['aDA']) # par.x(18)
    if syn_params.get('bDA'):
        lsyn.bDA = float(syn_params['bDA']) # par.x(19)
    if syn_params.get('wACH'):
        lsyn.wACH = float(syn_params['wACH']) # par.x(20)
    
    return lsyn


def pyr2int(syn_params, xs, secs):
    """Create a list of pyr2int synapses
    :param syn_params: parameters of a synapse
    :param xs: list of normalized distances along the section
    :param secs: target sections
    :return: list of NEURON synpase objects
    """
    syns = []
    for x, sec in zip(xs, secs):
        syn = Pyr2Int(syn_params, x, sec)
        syns.append(syn)
    return syns

def Int2Pyr(syn_params, sec_x, sec_id):
    """Create a int2pyr synapse
    :param syn_params: parameters of a synapse
    :param sec_x: normalized distance along the section
    :param sec_id: target section
    :return: NEURON synapse object
    """

    lsyn = h.int2pyr(sec_x, sec=sec_id)

    if syn_params.get('AlphaTmax_ampa'):
        lsyn.AlphaTmax_ampa = float(syn_params['AlphaTmax_ampa']) # par.x(21)
    if syn_params.get('Beta_ampa'):
        lsyn.Beta_ampa = float(syn_params['Beta_ampa']) # par.x(22)
    if syn_params.get('Cdur_ampa'):
        lsyn.Cdur_ampa = float(syn_params['Cdur_ampa']) # par.x(23)
    if syn_params.get('gbar_ampa'):
        lsyn.gbar_ampa = float(syn_params['gbar_ampa']) # par.x(24)
    if syn_params.get('Erev_ampa'):
        lsyn.Erev_ampa = float(syn_params['Erev_ampa']) # par.x(16)

    if syn_params.get('AlphaTmax_nmda'):
        lsyn.AlphaTmax_nmda = float(syn_params['AlphaTmax_nmda']) # par.x(25)
    if syn_params.get('Beta_nmda'):
        lsyn.Beta_nmda = float(syn_params['Beta_nmda']) # par.x(26)
    if syn_params.get('Cdur_nmda'):
        lsyn.Cdur_nmda = float(syn_params['Cdur_nmda']) # par.x(27)
    if syn_params.get('gbar_nmda'):
        lsyn.gbar_nmda = float(syn_params['gbar_nmda']) # par.x(28)
    if syn_params.get('Erev_nmda'):
        lsyn.Erev_nmda = float(syn_params['Erev_nmda']) # par.x(16)
    
    if syn_params.get('initW'):
        #lsyn.initW = float(syn_params['initW']) * random.uniform(0.5,1.0) # par.x(0) * rC.uniform(0.5,1.0)//rand.normal(0.5,1.5) //`rand.repick() 
        lsyn.initW = float(pyrWeight)

    if syn_params.get('Wmax'):
        lsyn.Wmax = float(syn_params['Wmax']) * lsyn.initW # par.x(1) * lsyn.initW
    if syn_params.get('Wmin'):
        lsyn.Wmin = float(syn_params['Wmin']) * lsyn.initW # par.x(2) * lsyn.initW
    #delay = float(syn_params['initW']) # par.x(3) + delayDistance
    #lcon = new NetCon(&v(0.5), lsyn, 0, delay, 1)

    if syn_params.get('lambda1'):
        lsyn.lambda1 = float(syn_params['lambda1']) # par.x(6)
    if syn_params.get('lambda2'):
        lsyn.lambda2 = float(syn_params['lambda2']) # par.x(7)
    if syn_params.get('threshold1'):
        lsyn.threshold1 = float(syn_params['threshold1']) # par.x(8)
    if syn_params.get('threshold2'):
        lsyn.threshold2 = float(syn_params['threshold2']) # par.x(9)
    if syn_params.get('tauD1'):
        lsyn.tauD1 = float(syn_params['tauD1']) # par.x(10)
    if syn_params.get('d1'):
        lsyn.d1 = float(syn_params['d1']) # par.x(11)
    if syn_params.get('tauD2'):
        lsyn.tauD2 = float(syn_params['tauD2']) # par.x(12)
    if syn_params.get('d2'):
        lsyn.d2 = float(syn_params['d2']) # par.x(13)
    if syn_params.get('tauF'):
        lsyn.tauF = float(syn_params['tauF']) # par.x(14)
    if syn_params.get('f'):
        lsyn.f = float(syn_params['f']) # par.x(15)

    
    return lsyn


def int2pyr(syn_params, xs, secs):
    """Create a list of int2pyr synapses
    :param syn_params: parameters of a synapse
    :param xs: list of normalized distances along the section
    :param secs: target sections
    :return: list of NEURON synpase objects
    """
    syns = []
    for x, sec in zip(xs, secs):
        syn = Int2Pyr(syn_params, x, sec)
        syns.append(syn)
    return syns


def Pyr2Pyr(syn_params, sec_x, sec_id):
    """Create a pyr2pyr synapse
    :param syn_params: parameters of a synapse
    :param sec_x: normalized distance along the section
    :param sec_id: target section
    :return: NEURON synapse object
    """

    lsyn = h.pyr2pyr(sec_x, sec=sec_id)

    #Assigns random generator of release probability.
    r = h.Random()
    r.MCellRan4()
    r.uniform(0,1)
    lsyn.setRandObjRef(r)

    generators.append(r)

    if syn_params.get('AlphaTmax_ampa'):
        lsyn.AlphaTmax_ampa = float(syn_params['AlphaTmax_ampa']) # par.x(21)
    if syn_params.get('Beta_ampa'):
        lsyn.Beta_ampa = float(syn_params['Beta_ampa']) # par.x(22)
    if syn_params.get('Cdur_ampa'):
        lsyn.Cdur_ampa = float(syn_params['Cdur_ampa']) # par.x(23)
    if syn_params.get('gbar_ampa'):
        lsyn.gbar_ampa = float(syn_params['gbar_ampa']) # par.x(24)
    if syn_params.get('Erev_ampa'):
        lsyn.Erev_ampa = float(syn_params['Erev_ampa']) # par.x(16)

    if syn_params.get('AlphaTmax_nmda'):
        lsyn.AlphaTmax_nmda = float(syn_params['AlphaTmax_nmda']) # par.x(25)
    if syn_params.get('Beta_nmda'):
        lsyn.Beta_nmda = float(syn_params['Beta_nmda']) # par.x(26)
    if syn_params.get('Cdur_nmda'):
        lsyn.Cdur_nmda = float(syn_params['Cdur_nmda']) # par.x(27)
    if syn_params.get('gbar_nmda'):
        lsyn.gbar_nmda = float(syn_params['gbar_nmda']) # par.x(28)
    if syn_params.get('Erev_nmda'):
        lsyn.Erev_nmda = float(syn_params['Erev_nmda']) # par.x(16)
    
    if syn_params.get('initW'):
        #lsyn.initW = float(syn_params['initW']) * 0.0000001#random.uniform(0.5,1.0) # par.x(0) * rC.uniform(0.5,1.0)//rand.normal(0.5,1.5) //`rand.repick() 
        #lsyn.initW = float(pyrWeight)
        #lsyn.initW = float(np.random.uniform(pyrWeight_m - pyrWeight_s, pyrWeight_m + pyrWeight_s))
        #import pdb; pdb.set_trace()
        #import pdb; pdb.set_trace()


        # h.distance(sec=sec_id.cell().soma[0])
        # dist = h.distance(sec_id(sec_x))
        # fullsecname = sec_id.name()
        # sec_type = fullsecname.split(".")[1][:4]
        # sec_id = int(fullsecname.split("[")[-1].split("]")[0])

        # if pyrWeight_s == 0:
        #     base = float(pyrWeight_m)
        # else:
        #     base = float(min(lognormal(pyrWeight_m, pyrWeight_s), 15))
        #     #base = np.random.lognormal(pyrWeight_m, np.sqrt(pyrWeight_s), 1)

        # # 0.9278403931213186 * ( 1.0022024845737223 ^ x )
        # # 0.9131511669645764 * ( 1.0019436631560847 ^ x )
        # # 0.16857988107990907 * ( 1.0039628707324273 ^ x )

        # if sec_type == "dend":
        #     lsyn.initW = base * (0.9278403931213186 * ( 1.0022024845737223 ** dist ))
        # elif sec_type == "apic":
        #     if dist < 750:
        #         lsyn.initW = base * (0.9131511669645764 * ( 1.0019436631560847 ** dist))
        #     else:
        #         lsyn.initW = base * (0.16857988107990907 * ( 1.0039628707324273 ** dist))
        #         # if sec_id >= 60:
        #         #     lsyn.initW = base * (0.59768734 * (1.00326839 ** dist))
        #         # else:
        #         #     lsyn.initW = base * (0.62153507 * (1.00248601 ** dist))

        # lsyn.initW = min(float(lsyn.initW), 60)

        #lsyn.initW = np.random.uniform(0.02, 2)

        lsyn.initW = pyrWeight_m

        #lsyn.initW = float(min(lognormal(pyrWeight_m, pyrWeight_s), 8))


    if syn_params.get('Wmax'):
        lsyn.Wmax = float(syn_params['Wmax']) * lsyn.initW # par.x(1) * lsyn.initW
    if syn_params.get('Wmin'):
        lsyn.Wmin = float(syn_params['Wmin']) * lsyn.initW # par.x(2) * lsyn.initW
    #delay = float(syn_params['initW']) # par.x(3) + delayDistance
    #lcon = new NetCon(&v(0.5), lsyn, 0, delay, 1)

    if syn_params.get('lambda1'):
        lsyn.lambda1 = float(syn_params['lambda1']) # par.x(6)
    if syn_params.get('lambda2'):
        lsyn.lambda2 = float(syn_params['lambda2']) # par.x(7)
    if syn_params.get('threshold1'):
        lsyn.threshold1 = float(syn_params['threshold1']) # par.x(8)
    if syn_params.get('threshold2'):
        lsyn.threshold2 = float(syn_params['threshold2']) # par.x(9)
    if syn_params.get('tauD1'):
        lsyn.tauD1 = float(syn_params['tauD1']) # par.x(10)
    if syn_params.get('d1'):
        lsyn.d1 = float(syn_params['d1']) # par.x(11)
    if syn_params.get('tauD2'):
        lsyn.tauD2 = float(syn_params['tauD2']) # par.x(12)
    if syn_params.get('d2'):
        lsyn.d2 = float(syn_params['d2']) # par.x(13)
    if syn_params.get('tauF'):
        lsyn.tauF = float(syn_params['tauF']) # par.x(14)
    if syn_params.get('f'):
        lsyn.f = float(syn_params['f']) # par.x(15)

    if syn_params.get('bACH'):
        lsyn.bACH = float(syn_params['bACH']) # par.x(17)
    if syn_params.get('aDA'):
        lsyn.aDA = float(syn_params['aDA']) # par.x(18)
    if syn_params.get('bDA'):
        lsyn.bDA = float(syn_params['bDA']) # par.x(19)
    if syn_params.get('wACH'):
        lsyn.wACH = float(syn_params['wACH']) # par.x(20)
    
    return lsyn


def pyr2pyr(syn_params, xs, secs):
    """Create a list of pyr2pyr synapses
    :param syn_params: parameters of a synapse
    :param xs: list of normalized distances along the section
    :param secs: target sections
    :return: list of NEURON synpase objects
    """
    np.random.seed(2129)
    syns = []
    for x, sec in zip(xs, secs):
        syn = Pyr2Pyr(syn_params, x, sec)
        syns.append(syn)
    return syns


def load():
    add_synapse_model(Bg2Pyr, 'bg2pyr', overwrite=False)
    add_synapse_model(Bg2Pyr, overwrite=False)
    add_synapse_model(Pyr2Pyr, 'pyr2pyr', overwrite=False)
    add_synapse_model(Pyr2Pyr, overwrite=False)
    add_synapse_model(Pyr2Int, 'pyr2int', overwrite=False)
    add_synapse_model(Pyr2Int, overwrite=False)
    add_synapse_model(Int2Pyr, 'int2pyr', overwrite=False)
    add_synapse_model(Int2Pyr, overwrite=False)
    return

def syn_params_dicts(syn_dir='../biophys_components/synaptic_models'):
    """
    returns: A dictionary of dictionaries containing all
    properties in the synapse json files
    """
    files = glob.glob(os.path.join(syn_dir,'*.json'))
    data = {}
    for fh in files:
        with open(fh) as f:
            data[os.path.basename(fh)] = json.load(f) #data["filename.json"] = {"prop1":"val1",...}
    return data