from bmtk.builder import NetworkBuilder
import numpy as np
import sys
import synapses
import pandas as pd
import os,sys,inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)
#Add divergent inhibition
#Change synapse counts for inhibition and excitation based on 50 um
from clustering import *
if __name__ == '__main__':
if __file__ != sys.argv[-1]:
inp = sys.argv[-1]
else:
raise Exception("no work" + str(sys.argv[-1]))
# df = pd.read_csv("Segments.csv")
# types = np.array(df["Type"])
# xs = np.array(df["X"])
# ids = np.array(df["Sec ID"])
# distances = np.array(df["Distance"])
# dendrites = np.where(((types == "dend") | (types == "apic")) & (distances >= 50))[0]
# N = len(dendrites)
N = int(inp)
np.random.seed(2129)
#np.random.seed(42)
#38% basal dend
#62% apical dend
all_dend = False
n_dend = 0#int(0.38 * N)
n_apic = 0#N - n_dend
#n_apic = int(0.62 * N)
if all_dend:
n_dend = N
else:
n_apic = N
synapses.load()
syn = synapses.syn_params_dicts()
net = NetworkBuilder("biophysical")
net.add_nodes(N=N, pop_name='Pyrc',
potental='exc',
model_type='biophysical',
model_template='hoc:L5PCtemplate',
morphology = None)
exc_stim = NetworkBuilder('exc_stim')
exc_stim.add_nodes(N=1,
pop_name='exc_stim',
potential='exc',
model_type='virtual')
# def connection(source, target, id):
# if target.node_id == id:
# return 1
# else:
# return 0
# for i in range(N):
# #import pdb; pdb.set_trace()
# net.add_edges(source=exc_stim.nodes(), target=net.nodes(),
# connection_rule=connection,
# connection_params={"id":i},
# syn_weight = 1,
# sec_id = ids[dendrites][i],
# delay=0.1,
# sec_x = xs[dendrites][i],
# dynamics_params='PN2PN.json',
# model_template=syn['PN2PN.json']['level_of_detail'])
df = pd.read_csv("../Segments_1um.csv")
#dends = df[df["Type"] == "dend"]
dends = df[(df["Type"] == "dend") & (df["Distance"] >= 50)]
apics = df[(df["Type"] == "apic")]
#Creates n_groups functional groups from the given segmenst.
#Each functional group will have only 1 cell and 8 clusters.
def make_groups(segs, n_groups):
groups = []
for i in range(n_groups):
new_group = FunctionalGroup(segs, segs.sample().iloc[0], 1, 8, "", 0, partial(make_seg_sphere, radius = 100), partial(make_seg_sphere, radius = 10), syn_per_cell=[2,8])
groups.append(new_group)
return groups
#Sets the location of synapses based on the given cell list.
def set_location(source, target, groups):
index = target.node_id
seg = groups[index].cells[0].get_seg()
return seg.bmtk_id, seg.x
#Each of these "groups" really just represent one input cell.
all_groups = make_groups(dends, n_dend) + make_groups(apics, n_apic)
#Sets the number of synapses for each input cell.
def connector_func(source, target, groups):
index = target.node_id
cons = groups[index].cells[0].n_syns
return cons
# Create connections between Exc --> Pyr cells
conn = net.add_edges(source=exc_stim.nodes(), target=net.nodes(),
connection_rule=connector_func,
syn_weight=1,
connection_params={'groups': all_groups},
#target_sections=['apic', 'dend'],
delay=0.1,
#distance_range=[149.0, 151.0], #0.348->0.31, 0.459->0.401
#distance_range=[50, 2000],#(2013, Pouille et al.)
#distance_range=[1250,2000],
#distance_range=[-500, 500],
dynamics_params='PN2PN.json',
model_template=syn['PN2PN.json']['level_of_detail'])
conn.add_properties(['sec_id',"sec_x"],
rule=set_location,
rule_params={'groups': all_groups},
dtypes=[np.int, np.float])
# Build and save our networks
net.build()
net.save_nodes(output_dir='network')
net.save_edges(output_dir='network')
exc_stim.build()
exc_stim.save_nodes(output_dir='network')
import h5py
f = h5py.File('exc_stim_spikes.h5', 'w')
f.create_group('spikes')
f['spikes'].create_group('exc_stim')
f['spikes']['exc_stim'].create_dataset("node_ids", data=[0])
f['spikes']['exc_stim'].create_dataset("timestamps", data=[400])
f.close()
from bmtk.utils.sim_setup import build_env_bionet
holding_v = -75
build_env_bionet(base_dir='./',
network_dir='./network',
tstop=500.0, dt = 0.1,
report_vars=['v'],
spikes_threshold=-10,
clamp_reports=['se'],#Records se clamp currents.
se_voltage_clamp={
"amps":[[holding_v, holding_v, holding_v]],
"durations": [[500, 0, 0]],
'gids': "all",
'rs': [0.01 for i in range(N)],
},
spikes_inputs=[('exc_stim', 'exc_stim_spikes.h5')],
components_dir='../biophys_components',
compile_mechanisms=True)