TITLE AMPA and NMDA receptor with presynaptic short-term plasticity
COMMENT
AMPA and NMDA receptor conductance using a dual-exponential profile
presynaptic short-term plasticity based on Fuhrmann et al. 2002
Implemented by Srikanth Ramaswamy, Blue Brain Project, July 2009
Etay: changed weight to be equal for NMDA and AMPA, gmax accessible in Neuron
ENDCOMMENT
NEURON {
POINT_PROCESS ProbAMPANMDA2
RANGE tau_r_AMPA, tau_d_AMPA, tau_r_NMDA, tau_d_NMDA
RANGE Use, u, Dep, Fac, u0, weight_NMDA
RANGE i, iampa, inmda, g_AMPA, g_NMDA, e, initW
NONSPECIFIC_CURRENT iampa,inmda
}
PARAMETER {
tau_r_AMPA = 0.2 (ms) : dual-exponential conductance profile
tau_d_AMPA = 1.7 (ms) : IMPORTANT: tau_r < tau_d
tau_r_NMDA = 0.29 (ms) : dual-exponential conductance profile
tau_d_NMDA = 43 (ms) : IMPORTANT: tau_r < tau_d
Use = 1.0 (1) : Utilization of synaptic efficacy (just initial values! Use, Dep and Fac are overwritten by BlueBuilder assigned values)
Dep = 100 (ms) : relaxation time constant from depression
Fac = 10 (ms) : relaxation time constant from facilitation
e = 0 (mV) : AMPA and NMDA reversal potential
mg = 1 (mM) : initial concentration of mg2+
mggate
initW = .001 (uS)
u0 = 0 :initial value of u, which is the running value of Use
}
COMMENT
The Verbatim block is needed to generate random nos. from a uniform distribution between 0 and 1
for comparison with Pr to decide whether to activate the synapse or not
ENDCOMMENT
ASSIGNED {
v (mV)
i (nA)
iampa (nA)
inmda (nA)
g_AMPA (uS)
g_NMDA (uS)
factor_AMPA
factor_NMDA
weight_NMDA
}
STATE {
A_AMPA : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_r_AMPA
B_AMPA : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_d_AMPA
A_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_r_NMDA
B_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_d_NMDA
}
INITIAL{
LOCAL tp_AMPA, tp_NMDA
A_AMPA = 0
B_AMPA = 0
A_NMDA = 0
B_NMDA = 0
tp_AMPA = (tau_r_AMPA*tau_d_AMPA)/(tau_d_AMPA-tau_r_AMPA)*log(tau_d_AMPA/tau_r_AMPA) :time to peak of the conductance
tp_NMDA = (tau_r_NMDA*tau_d_NMDA)/(tau_d_NMDA-tau_r_NMDA)*log(tau_d_NMDA/tau_r_NMDA) :time to peak of the conductance
factor_AMPA = -exp(-tp_AMPA/tau_r_AMPA)+exp(-tp_AMPA/tau_d_AMPA) :AMPA Normalization factor - so that when t = tp_AMPA, gsyn = gpeak
factor_AMPA = 1/factor_AMPA
factor_NMDA = -exp(-tp_NMDA/tau_r_NMDA)+exp(-tp_NMDA/tau_d_NMDA) :NMDA Normalization factor - so that when t = tp_NMDA, gsyn = gpeak
factor_NMDA = 1/factor_NMDA
}
BREAKPOINT {
SOLVE state METHOD cnexp
mggate = 1 / (1 + exp(0.08 (/mV) * -(v)) * (mg / 3.57 (mM))) :mggate kinetics - Jahr & Stevens 1990
g_AMPA = initW*.001*(B_AMPA-A_AMPA) :compute time varying conductance as the difference of state variables B_AMPA and A_AMPA
g_NMDA = initW*.001*(B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics
iampa = g_AMPA*(v-e) :compute the AMPA driving force based on the time varying conductance, membrane potential, and AMPA reversal
inmda = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal
i = iampa + inmda
}
DERIVATIVE state{
A_AMPA' = -A_AMPA/tau_r_AMPA
B_AMPA' = -B_AMPA/tau_d_AMPA
A_NMDA' = -A_NMDA/tau_r_NMDA
B_NMDA' = -B_NMDA/tau_d_NMDA
}
NET_RECEIVE (weight,weight_AMPA, weight_NMDA, Pv, Pr, u, tsyn (ms)){
weight_AMPA = weight
weight_NMDA = weight
A_AMPA = A_AMPA + weight_AMPA*factor_AMPA
B_AMPA = B_AMPA + weight_AMPA*factor_AMPA
A_NMDA = A_NMDA + weight_NMDA*factor_NMDA
B_NMDA = B_NMDA + weight_NMDA*factor_NMDA
:printf("NMDA weight = %g\n", weight_NMDA)
INITIAL{
Pv=1
u=u0
tsyn=t
}
: calc u at event-
if (Fac > 0) {
u = u*exp(-(t - tsyn)/Fac) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.
} else {
u = Use
}
if(Fac > 0){
u = u + Use*(1-u) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.
}
Pv = 1 - (1-Pv) * exp(-(t-tsyn)/Dep) :Probability Pv for a vesicle to be available for release, analogous to the pool of synaptic
:resources available for release in the deterministic model. Eq. 3 in Fuhrmann et al.
Pr = u * Pv :Pr is calculated as Pv * u (running value of Use)
Pv = Pv - u * Pv :update Pv as per Eq. 3 in Fuhrmann et al.
:printf("Pv = %g\n", Pv)
:printf("Pr = %g\n", Pr)
tsyn = t
A_AMPA = A_AMPA + weight_AMPA*factor_AMPA
B_AMPA = B_AMPA + weight_AMPA*factor_AMPA
A_NMDA = A_NMDA + weight_NMDA*factor_NMDA
B_NMDA = B_NMDA + weight_NMDA*factor_NMDA
}