from neuron import h
from math import sqrt, pi
import os
from Cell3D import *
####################################################################
# Setting up params
####################################################################
Vrest = -94.5896010066
h.v_init = -94.5896010066
h.celsius = 34.0 # same as experiment
# passive properties (optimization proxies)
cap = 0.800045777348
rall = 149.477586545
rm = 44140.5795522
spinecapfactor = 1.10734608835 # not used when == 1.0 since have explicit spine neck/head
#Na, K reversal potentials calculated from BenS internal and external solutions via Nernst equation
p_ek = -104
p_ena = 42
# h-current - based on Kole 2006, but parameterized for opt
h.erev_ih = h_erev = -37.0
h_gbar = 6.18831640879e-06 # mho/cm^2
h_ascale = 0.00643
h_bscale = 0.193
h_ashift = 154.9
h_aslope = 11.9
h_bslope = 33.1
# spiking currents
nax_gbar = 0.0153130368342
nax_gbar_axonm = nax_gbar_somam = 5
kdr_gbar = 0.0084715576279
kdr_gbar_axonm = kdr_gbar_somam = 5
kap_gbar = 0.06
kap_gbar_axonm = kap_gbar_somam = 5
# These param values match the default values in kap.mod (except where indicated).
kap_vhalfn = 35.0 # def 11
kap_vhalfl = -56.0
kap_tq = -45.0 # def -40
# new ion channel parameters
cal_gcalbar = 5.73945708921e-06
can_gcanbar = 4.74427101753e-06
cat_gcatbar = 1.08074219052e-06
calginc = 1.0
kBK_gpeak = 7.67842640257e-05 # original value of 268e-4 too high for this model
kBK_caVhminShift = 45.0 # shift upwards to get lower effect on subthreshold
cadad_depth = 0.102468419281 # original 1; reduced for tighter coupling of ica and cai
cadad_taur = 16.0181691392
nap_gbar = 0.0
ican_gbar = 0.0
###############################################################################
# Morph Cell
###############################################################################
class ITcell (Cell3D):
def __init__ (self,fmorph=None,params=None):
self.fmorph = fmorph
if params: self.fmorph = self.set_params(params)
Cell3D.__init__(self,self.fmorph)
def addapicchan(self):
for sec in self.apic:
sec.insert('ca_ion')
sec.insert('cadad') # cadad.mod
sec.insert('cal') # cal.mod
sec.insert('can') # can.mod
sec.insert('kBK') #kBK.mod
def apicchanprop(self):
for sec in self.apic:
sec.gcalbar_cal = cal_gcalbar
sec.gcanbar_can = can_gcanbar
sec.gpeak_kBK = kBK_gpeak
sec.caVhmin_kBK = -46.08 + kBK_caVhminShift
sec.depth_cadad = cadad_depth
sec.taur_cadad = cadad_taur
def addbasalchan(self):
# basal == dend
for sec in self.dend:
sec.insert('ca_ion')
sec.insert('cadad') # cadad.mod
sec.insert('cal') # cal.mod
sec.insert('can') # can.mod
sec.insert('kBK') #kBK.mod
def basalchanprop(self):
# basal == dend
for sec in self.dend:
sec.gcalbar_cal = cal_gcalbar
sec.gcanbar_can = can_gcanbar
sec.gpeak_kBK = kBK_gpeak
sec.caVhmin_kBK = -46.08 + kBK_caVhminShift
sec.depth_cadad = cadad_depth
sec.taur_cadad = cadad_taur
def geom_nseg(self):
# local freq, d_lambda, before, after, tmp
# these are reasonable values for most models
freq = 100 # Hz, frequency at which AC length constant will be computed
d_lambda = 0.1
before = 0
after = 0
for sec in self.all: before += sec.nseg
#soma area(0.5) # make sure diam reflects 3d points
for sec in self.all:
# creates the number of segments per section
# lambda_f takes in the current section
sec.nseg = int((sec.L/(d_lambda*self.lambda_f(sec))+0.9)/2)*2 + 1
for sec in self.all:
after += sec.nseg
print "geom_nseg: changed from ", before, " to ", after, " total segments"
def lambda_f(self, section):
# these are reasonable values for most models
freq = 100 # Hz, frequency at which AC length constant will be computed
d_lambda = 0.1
# The lowest number of n3d() is 2
if (section.n3d() < 2):
return 1e5*sqrt(section.diam/(4*pi*freq*section.Ra*section.cm))
# above was too inaccurate with large variation in 3d diameter
# so now we use all 3-d points to get a better approximate lambda
x1 = section.arc3d(0)
d1 = section.diam3d(0)
self.lam = 0
#print section, " n3d:", section.n3d(), " diam3d:", section.diam3d(0)
for i in range(section.n3d()): #h.n3d()-1
x2 = section.arc3d(i)
d2 = section.diam3d(i)
self.lam += (x2 - x1)/sqrt(d1 + d2)
x1 = x2
d1 = d2
# length of the section in units of lambda
self.lam *= sqrt(2) * 1e-5*sqrt(4*pi*freq*section.Ra*section.cm)
return section.L/self.lam
def optimize_nseg (self):
# Ra, cm, spinecapfactor
# use worst case Ra, cm values
for sec in self.all:
sec.Ra = rall
sec.cm = cap
for i in xrange(2,len(self.apic),1):
self.apic[i].cm = spinecapfactor * self.apic[i].cm # spinecapfactor * cm
self.apic[i].g_pas = spinecapfactor / rm # spinecapfactor * (1.0/rm)
for sec in self.dend:
sec.cm = spinecapfactor * sec.cm
sec.g_pas = spinecapfactor / rm
# optimize # of segments per section (do this afer setting Ra, cm)
self.geom_nseg()
def init_once (self):
if self.fmorph.endswith('BS0409.ASC') or self.fmorph.endswith('BS0284.ASC'):
# NB: paste-on axon if using SPI morphology (eg for comparing morph effect on dynamics)
self.axon = []
self.add_axon()
for sec in self.all: #forall within an object just accesses the sections belonging to the object
sec.insert('pas') # passive
sec.insert('ih') # h-current in Ih_kole.mod
sec.insert('nax') # Na current
sec.insert('kdr') # K delayed rectifier current
sec.insert('kap') # K-A current
sec.insert('k_ion')
sec.insert('na_ion')
self.setallprop()
self.addapicchan()
self.apicchanprop()
self.addbasalchan()
self.basalchanprop()
for i in xrange(2,len(self.apic),1):
self.apic[i].cm = spinecapfactor * self.apic[i].cm # spinecapfactor * cm
self.apic[i].g_pas = spinecapfactor / rm # spinecapfactor * (1.0/rm)
for sec in self.dend:
sec.cm = spinecapfactor * sec.cm
sec.g_pas = spinecapfactor / rm
self.optimize_nseg()
self.setgbarnaxd()
self.setgbarkapd() # kap in apic,basal dends
self.setgbarkdrd() # kdr in apic,basal dends
self.sethgbar() # distributes HCN conductance
for sec in self.soma:
sec.insert('ca_ion')
sec.insert('cadad')
sec.insert('cal')
sec.insert('cat')
sec.insert('can')
sec.insert('kBK')
sec.insert('ican') # can_sidi.mod
sec.insert('nap') # nap_sidi.mod
self.setsomag()
self.setaxong()
def add_axon (self):
# NB: paste-on axon if using SPI morphology (eg for comparing morph effect on dynamics)
from PTAxonMorph import axonPts
self.axon.append(h.Section(name="axon[0]"))
self.all.append(self.axon[0])
self.axon[0].connect(self.soma[0], 0.0, 0.0)
# clears 3d points
h.pt3dclear()
# define a logical connection point relative to the first 3-d point
h.pt3dstyle(axonPts[0][0], axonPts[0][1], axonPts[0][2], axonPts[0][3], sec=self.axon[0])
# add axon points after first logical connection point
for x, y, z, d in axonPts[1:]: h.pt3dadd(x, y, z, d, sec=self.axon[0])
def reconfig (self):
self.setallprop() # set initial properties, including g_pas,e_pas,cm,Ra,etc.
self.optimize_nseg() # set nseg based on passive properties
self.apicchanprop() # initial apic dend properties
self.basalchanprop() # initial basal dend properties
self.setgbarnaxd() # nax in apic,basal dends
self.setgbarkapd() # kap in apic,basal dends
self.setgbarkdrd() # kdr in apic,basal dends
self.sethgbar() # h in all locations
self.setsomag() # soma-specific conductance values
self.setaxong() # axon-specific conductance values
def setallprop (self):
for sec in self.all:
# passive
sec.g_pas = 1 / rm
sec.Ra = rall
sec.cm = cap
sec.e_pas = Vrest
# h-current
h.erev_ih = h_erev
# Na current
sec.gbar_nax = nax_gbar
# K delayed rectifier current
sec.gbar_kdr = kdr_gbar
# K-A current
sec.gbar_kap = kap_gbar
sec.vhalfn_kap = kap_vhalfn
sec.vhalfl_kap = kap_vhalfl
sec.tq_kap = kap_tq
# reversal potentials
sec.ena = p_ena
sec.ek = p_ek
def setsomag (self):
for sec in self.soma:
sec.gcalbar_cal = cal_gcalbar
sec.gcanbar_can = can_gcanbar
sec.gcatbar_cat = cat_gcatbar
sec.gpeak_kBK = kBK_gpeak
sec.caVhmin_kBK = -46.08 + kBK_caVhminShift
sec.depth_cadad = cadad_depth
sec.taur_cadad = cadad_taur
sec.gbar_nap = nap_gbar
sec.gbar_ican = ican_gbar
def setaxong(self):
# axon has more I_Na, I_KA, I_KDR, and no I_h
for sec in self.axon:
# axon has no Ih
sec.gbar_ih = 0
# increase the I_Na, I_Ka, and I_KDR
sec.gbar_nax = nax_gbar_axonm * nax_gbar
sec.gbar_kap = kap_gbar_axonm * kap_gbar
sec.gbar_kdr = kdr_gbar_axonm * kdr_gbar
def setgbarnaxd(self):
for sec in self.dend: sec.gbar_nax = nax_gbar
for sec in self.apic: sec.gbar_nax = nax_gbar
def setgbarkapd(self):
for sec in self.dend: sec.gbar_kap = kap_gbar
for sec in self.apic: sec.gbar_kap = kap_gbar
def setgbarkdrd(self):
for sec in self.dend: sec.gbar_kdr = kdr_gbar
for sec in self.apic: sec.gbar_kdr = kdr_gbar
def sethgbar(self):
lsec = self.soma + self.apic + self.dend
for sec in lsec:
sec.gbar_ih = h_gbar
sec.ascale_ih = h_ascale
sec.bscale_ih = h_bscale
sec.ashift_ih = h_ashift
sec.aslope_ih = h_aslope
sec.bslope_ih = h_bslope
def set_params(self, params):
global cap
global kBK_gpeak
global h_gbar
global h_bslope
global rall
global rm
global h_bscale
global h_ashift
global h_ascale
global kBK_caVhminShift
global spinecapfactor
global h_aslope
global Vrest
global v_init
global nap_gbar
global ican_gbar
global kap_gbar
global cat_gcatbar
global nax_gbar
global can_gcanbar
global kBK_gpeak
global kap_tq
global kap_vhalfl
global cal_gcalbar
global kdr_gbar
if params == 'BS1578':
# properties from subthreshold fits
cap = 1.08061102459
kBK_gpeak = 1.01857671029e-08
h_gbar = 1.52895460186e-05
h_bslope = 28.4924968486
rall = 169.820315809
rm = 34458.8500812
h_bscale = 0.158315912545
h_ashift = 119.088497469
h_ascale = 0.00755591656239
kBK_caVhminShift = 74.643306075
spinecapfactor = 1.00000193943
h_aslope = 7.82783295634
Vrest = -93.4020509612
h.v_init = -93.4020509612
nap_gbar = 0.0
ican_gbar = 0.0
# properties from evolution
kap_gbar = 0.0648939943904
cat_gcatbar = 5.09183542632e-05
nax_gbar = 0.0371377568371
can_gcanbar = 4.32324870809e-05
kBK_gpeak = 5.56694789593e-05
kap_tq = -39.3494405593
kap_vhalfl = -55.4686026168
cal_gcalbar = 2.82453671147e-05
kdr_gbar = 0.00378281934564
return os.environ['SITE']+'/nrniv/local/morph/BS1578.ASC'
elif params == 'BS1579':
# properties from subthreshold fits
cap = 0.950146286173
kBK_gpeak = 1.00322132792e-08
h_gbar = 1.472090636e-05
h_bslope = 39.0877074693
rall = 138.886815548
rm = 58383.8130966
h_bscale = 0.239679949446
h_ashift = 106.353947441
h_ascale = 0.00600855548467
kBK_caVhminShift = 61.4360979639
spinecapfactor = 1.00093462207
h_aslope = 5.84695325827
Vrest = -79.2637828106
h.v_init = -79.2637828106
nap_gbar = 0.0
ican_gbar = 0.0
# properties from evolution
kap_gbar = 0.0478807757046
cat_gcatbar = 4.4250857809e-05
nax_gbar = 0.0237052062208
can_gcanbar = 2.8760466502e-05
kBK_gpeak = 0.000583328963048
kap_tq = -36.6802561086
kap_vhalfl = -37.3347304488
cal_gcalbar = 3.9810325062e-05
kdr_gbar = 0.00382910493766
return os.environ['SITE']+'/nrniv/local/morph/BS1579.ASC'