// Background synaptic activity
totalb=100
objref vstim[nPcells][totalb], vstimpr[nPcells][totalb],vstimpra[nPcells][totalb], vstim_inh[nPcells][totalb], vstiminh[nINcells][totalb], ran, BG_Stim_basal[totalb][nPcells][totalb], BG_Stim_Apicpr[totalb][nPcells][totalb], BG_Stim_Apic[totalb][nPcells][totalb], BG_Stim_Soma[totalb][nINcells][totalb]
objref ampabasalback[nPcells][totalb], nmdabasalback[nPcells][totalb],ampabackpr[nPcells][totalb], nmdabackpr[nPcells][totalb],ampabackpra[nPcells][totalb], nmdabackpra[nPcells][totalb],ampain_back[nINcells][totalb],nmdain_back[nINcells][totalb], gabaa_back[nPcells][totalb]
objref ncampaback[nPcells][totalb], ncnmdaback[nPcells][totalb], ncampabackpr[nPcells][totalb], ncnmdabackpr[nPcells][totalb], ncnmdainback[nINcells][totalb], ncampainback[nINcells][totalb], ncgabaa[nPcells][totalb]
objref ncampabackpra[nPcells][totalb], ncnmdabackpra[nPcells][totalb]
strdef temp_load
proc call_vecstim () {
xopen("importBackgroundStimParams.hoc")
ran = new Random($1+5)
PIDb = ran.uniform(0, 1)
//----------------------Connect
for cn=0,nPcells-1 {
for syn=0,(synapses_backb-1) {
vstim[cn][syn] = new VecStim(0.5)
vstim[cn][syn].delay = 0
vstim[cn][syn].play(BG_Stim_basal[runs][cn][syn])
PIDb=ran.repick()
Pcells[cn].dend[0] ampabasalback[cn][syn]=new GLU(PIDb)
Pcells[cn].dend[0] nmdabasalback[cn][syn]=new nmda_spike(PIDb)
ncampaback[cn][syn] = new NetCon(vstim[cn][syn], ampabasalback[cn][syn], -20, 0, ampaweight)
ncnmdaback[cn][syn] = new NetCon(vstim[cn][syn], nmdabasalback[cn][syn], -20, 0, 0.25)
}
}
for cn=0,nPcells-1 {
for syn=0,(synapses_backpr-1) {
vstimpr[cn][syn] = new VecStim(0.5)
vstimpr[cn][syn].delay = 0
vstimpr[cn][syn].play(BG_Stim_Apicpr[runs][cn][syn])
PIDb=ran.repick()
Pcells[cn].dend[1] ampabackpr[cn][syn]=new GLU(PIDb)
Pcells[cn].dend[1] nmdabackpr[cn][syn]=new nmda_spike(PIDb)
ncampabackpr[cn][syn] = new NetCon(vstimpr[cn][syn], ampabackpr[cn][syn], -20, 0, ampaweightpr)
ncnmdabackpr[cn][syn] = new NetCon(vstimpr[cn][syn], nmdabackpr[cn][syn], -20, 0, 0.22)
}
}
for cn=0,nPcells-1 {
for syn=0,(synapses_backa-1) {
vstimpra[cn][syn] = new VecStim(0.5)
vstimpra[cn][syn].delay = 0
vstimpra[cn][syn].play(BG_Stim_Apic[runs][cn][syn])
PIDb=ran.repick()
Pcells[cn].dend[2] ampabackpra[cn][syn]=new GLU(PIDb)
Pcells[cn].dend[2] nmdabackpra[cn][syn]=new nmda_spike(PIDb)
ncampabackpra[cn][syn] = new NetCon(vstimpra[cn][syn], ampabackpra[cn][syn], -20, 0, ampaweightpr)
ncnmdabackpra[cn][syn] = new NetCon(vstimpra[cn][syn], nmdabackpra[cn][syn], -20, 0, 0.2)
}
}
for cn=0,nINcells-1 {
for syn=0,synapses_backinh-1 {
vstiminh[cn][syn] = new VecStim(0.5)
vstiminh[cn][syn].delay = 0
vstiminh[cn][syn].play(BG_Stim_Soma[runs][cn][syn])
PIDb=ran.repick()
INcells[cn].soma ampain_back[cn][syn]=new GLUIN(PIDb)
INcells[cn].soma nmdain_back[cn][syn]=new NMDA(PIDb)
ncampainback[cn][syn] = new NetCon(vstiminh[cn][syn], ampain_back[cn][syn], -20, 0, ampaweightin)
ncnmdainback[cn][syn] = new NetCon(vstiminh[cn][syn], nmdain_back[cn][syn], -20, 0, nmdaweightin)
}
}
}