TITLE Somatic L-type calcium channel with low threshold for activation
: used in somatic and proximal dendritic regions
: it calculates I_Ca using channel permeability instead of conductance
COMMENT
From paper Muellner2015
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=206244&file=/CA1_multi/mechanism/cat.mod#tabs-2
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
(S) = (siemens)
FARADAY = 96520 (coul)
R = (k-mole) (joule/degC) : (k-mole) is stored as the product of Boltzmanns constant and Avogadros number.
KTOMV = .0853 (mV/degC)
}
: -----------------------------------------------------------
NEURON {
SUFFIX iCaT
USEION ca READ cai,cao WRITE ica VALENCE 2
RANGE gcatbar, minf, mtau, hinf, htau, i
}
: -----------------------------------------------------------
PARAMETER { :parameters that can be entered when function is called in cell-setup
gcatbar = 0 (S/cm2) : initialized conductance
ki = 0.001 (mM)
cai = 5.e-5 (mM) : initial internal Ca++ concentration
cao = 2 (mM) : initial external Ca++ concentration
tfa = 1 : time constant scaling factor
tfi = 0.68
tBase = 23.5 (degC)
eca = 140 (mV) : Ca++ reversal potential
}
: -----------------------------------------------------------
ASSIGNED { : parameters needed to solve DE
v (mV)
celsius (degC)
gcat (S/cm2)
ica (mA/cm2)
i (mA/cm2)
asdf
minf
mtau (ms)
hinf
htau (ms)
}
: -----------------------------------------------------------
STATE { m h } : unknown parameter to be solved in the DEs
: -----------------------------------------------------------
BREAKPOINT {
SOLVE states METHOD cnexp
gcat = gcatbar*m*m*h*h2(cai) : maximum channel permeability
i = gcat*ghk(v,cai,cao) : calcium current induced by this channel
ica = i
}
: -----------------------------------------------------------
INITIAL { : initialize the following parameter using rates()
rates(v)
m = minf
h = hinf
gcat = gcatbar*m*m*h*h2(cai)
}
: -----------------------------------------------------------
? states
DERIVATIVE states {
rates(v)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
}
: -----------------------------------------------------------
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a
UNITSOFF
a = alpm(v)
mtau = 1.0 / (tfa*(a+betm(v))) : estimation of activation tau
minf = a /( a + betm(v) ) : estimation of activation steady state value
a = alph(v)
htau = 1.0 / (tfi*(a+beth(v))) : estimation of inactivation tau
hinf = a / ( a + beth( v ) ) : estimation of inactivation steady state value
UNITSON
}
: -----------------------------------------------------------
UNITSOFF
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk = -f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) { : temperature-dependent adjustment factor
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alpm(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
}
FUNCTION betm(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
betm = 0.046*exp(-v/22.73)
}
FUNCTION alph(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
alph = 1.6e-2*exp(-(v+57.0)/19.0)
}
FUNCTION beth(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
beth = 1.0/(exp((-v+15)/10)+1.0)
}
UNITSON
: -----------------------------------------------------------