This is the readme.txt for the models associated with the paper Luo CH and Rudy Y. A model of the venticular cardiac action potential: depolarization, repolarization and their interaction. Circ Res 1991;68: 1501-1526. Wu SN. Simulation of the cardiac action potential based on the Hodgkin- Huxley kinetics with the use of Microsoft Excel spreadsheets. Chinese J Physiol 2004;47:15-22. Abstract: A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. The fast sodium current, INa, is characterized by fast upstroke velocity (Vmax = 400 V/sec) and slow recovery from inactivation. The time-independent potassium current, IK1, includes a negative-slope phase and displays significant crossover phenomenon as [K]o is varied. The time-dependent potassium current, IK, shows only a minimal degree of crossover. A novel potassium current that activates at plateau potentials is included in the model. The simulated action potential duplicates the experimentally observed effects of changes in [K]o on action potential duration and rest potential. Physiological simulations focus on the interaction between depolarization and repolarization (i.e., premature stimulation). Results demonstrate the importance of the slow recovery of INa in determining the response of the cell. Simulated responses to periodic stimulation include monotonic Wenckebach patterns and alternans at normal [K]o, whereas at low [K]o nonmonotonic Wenckebach periodicities, aperiodic patterns, and enhanced supernormal excitability that results in unstable responses ("chaotic activity") are observed. The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics. --- To run the models: XPP: start with the command xpp LR1_test.ode This simulation will make graphs similar to figures 4 and 5 in the paper of Wu: Bard Ermentrout's website http://www.pitt.edu/~phase/ describes how to get and use xpp. These model files were submitted by: Drs. Sheng-Nan Wu and Ruey J Sung National Cheng Kung University Medical Center Tainan 70101, Taiwan snwu@mail.ncku.edu.tw