// genesis /* Channels used in: 'Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb' Upinder S. Bhalla and James M. Bower Journal of Neurophysiology Vol 69 No. 6, June 1993 pp 1948-1965 */ /* FILE INFORMATION ** Some Ca channels for the purkinje cell ** L Channel data from : ** T. Hirano and S. Hagiwara Pflugers A 413(5) pp463-469, 1989 ** ** T Channel data from : ** Kaneda, Wakamori, Ito and Akaike J Neuroph 63(5), pp1046-1051 1990 ** ** Implemented by Eric De Schutter - January 1991 ** Converted to NEUROKIT format by Upinder S. Bhalla. Feb 1991 ** This file depends on functions and constants defined in defaults.g */ // CONSTANTS float ECa = 0.07 // (I-current) float ENa = 0.045 // (I-current) float SOMA_A = 1e-9 // sq m /* FILE INFORMATION ** Rat Na channel, cloned, in oocyte expression system. ** Data from : ** Stuhmer, Methfessel, Sakmann, Noda an Numa, Eur Biophys J 1987 ** 14:131-138 ** ** Expts carred out at 16 deg Celsius. ** ** Implemented in tabchan format by Upinder S. Bhalla March 1991 ** This file depends on functions and constants defined in defaults.g */ //======================================================================== // Adjusted LCa channel //======================================================================== function make_LCa3_mit_usb if ({exists LCa3_mit_usb}) return end float ECa = 0.07 // (I-current) create tabchannel LCa3_mit_usb setfield LCa3_mit_usb Ek {ECa} Gbar {1200.0*SOMA_A} Ik 0 Gk 0 \ Xpower 1 Ypower 1 Zpower 0 setupalpha LCa3_mit_usb X 7500.0 0.0 1.0 -0.013 -0.007 1650.0 \ 0.0 1.0 -0.014 0.004 setupalpha LCa3_mit_usb Y 6.8 0.0 1.0 0.030 0.012 60.0 0.0 \ 1.0 0.0 -0.011 end /********************************************************************* ** I-Current (Na) *********************************************************************/ function make_Na_rat_smsnn// Na current float ENa = 0.045 // (I-current) float x, y, dx int i if ({exists Na_rat_smsnn}) return end create tabchannel Na_rat_smsnn setfield Na_rat_smsnn Ek {ENa} Gbar {1200.0*SOMA_A} Ik 0 Gk 0 \ Xpower 3 Ypower 1 Zpower 0 call Na_rat_smsnn TABCREATE X 30 -0.1 0.05 setfield Na_rat_smsnn \ X_A->table[0] 1.0e-4 \ // -0.100 Volts X_A->table[1] 1.0e-4 \ // -0.095 Volts X_A->table[2] 1.2e-4 \ // -0.090 Volts X_A->table[3] 1.45e-4 \ // -0.085 Volts X_A->table[4] 1.67e-4 \ // -0.080 Volts X_A->table[5] 2.03e-4 \ // -0.075 Volts X_A->table[6] 2.47e-4 \ // -0.070 Volts X_A->table[7] 3.20e-4 \ // -0.065 Volts X_A->table[8] 3.63e-4 \ // -0.060 Volts X_A->table[9] 4.94e-4 \ // -0.055 Volts X_A->table[10] 4.07e-4 \ // -0.050 Volts X_A->table[11] 4.00e-4 \ // -0.045 Volts X_A->table[12] 3.56e-4 \ // -0.040 Volts X_A->table[13] 3.49e-4 \ X_A->table[14] 3.12e-4 \ // -0.030 X_A->table[15] 2.83e-4 \ X_A->table[16] 2.62e-4 \ // -0.020 X_A->table[17] 2.25e-4 \ X_A->table[18] 2.03e-4 \ // -0.010 X_A->table[19] 1.74e-4 \ X_A->table[20] 1.67e-4 \ // 0.0 X_A->table[21] 1.31e-4 \ X_A->table[22] 1.23e-4 \ // 0.010 X_A->table[23] 1.16e-4 \ X_A->table[24] 1.02e-4 \ // 0.020 X_A->table[25] 0.87e-4 \ X_A->table[26] 0.73e-4 \ // 0.030 X_A->table[27] 0.80e-4 \ X_A->table[28] 0.80e-4 \ // 0.040 X_A->table[29] 0.80e-4 \ X_A->table[30] 0.80e-4 // 0.050 x = -0.1 dx = 0.15/30.0 for (i = 0; i <= 30; i = i + 1) y = 1.0/(1.0 + {exp {-(x + 0.041)/0.0086}}) setfield Na_rat_smsnn X_B->table[{i}] {y} x = x + dx end tweaktau Na_rat_smsnn X setfield Na_rat_smsnn X_A->calc_mode 0 X_B->calc_mode 0 call Na_rat_smsnn TABFILL X 3000 0 call Na_rat_smsnn TABCREATE Y 30 -0.1 0.05 // settab2const(Na_rat_smsnn,Y_A,0,10,6.4e-3) //-0.1 thru -0.05=>0.0 setfield Na_rat_smsnn \ Y_A->table[0] 0.9e-3 \ // -0.100 Volts Y_A->table[1] 1.0e-3 \ // -0.095 Volts Y_A->table[2] 1.2e-3 \ // -0.090 Volts Y_A->table[3] 1.45e-3 \ // -0.085 Volts Y_A->table[4] 1.7e-3 \ // -0.080 Volts Y_A->table[5] 2.05e-3 \ // -0.075 Volts Y_A->table[6] 2.55e-3 \ // -0.070 Volts Y_A->table[7] 3.2e-3 \ // -0.065 Volts Y_A->table[8] 4.0e-3 \ // -0.060 Volts Y_A->table[9] 5.0e-3 \ // -0.055 Volts Y_A->table[10] 6.49e-3 \ // -0.050 Volts Y_A->table[11] 6.88e-3 \ // -0.045 Volts Y_A->table[12] 4.07e-3 \ // -0.040 Volts Y_A->table[13] 2.71e-3 \ Y_A->table[14] 2.03e-3 \ // -0.030 Y_A->table[15] 1.55e-3 \ Y_A->table[16] 1.26e-3 \ // -0.020 Y_A->table[17] 1.07e-3 \ Y_A->table[18] 0.87e-3 \ // -0.010 Y_A->table[19] 0.78e-3 \ Y_A->table[20] 0.68e-3 \ // 0.0 Y_A->table[21] 0.63e-3 \ Y_A->table[22] 0.58e-3 \ // 0.010 Y_A->table[23] 0.53e-3 \ Y_A->table[24] 0.48e-3 \ // 0.020 Y_A->table[25] 0.48e-3 \ Y_A->table[26] 0.48e-3 \ // 0.030 Y_A->table[27] 0.48e-3 \ Y_A->table[28] 0.48e-3 \ // 0.040 Y_A->table[29] 0.43e-3 \ Y_A->table[30] 0.39e-3 // 0.050 x = -0.1 dx = 0.15/30.0 for (i = 0; i <= 30; i = i + 1) y = 1.0/(1.0 + {exp {(x + 0.064)/0.0102}}) setfield Na_rat_smsnn Y_B->table[{i}] {y} x = x + dx end tweaktau Na_rat_smsnn Y setfield Na_rat_smsnn Y_A->calc_mode 0 Y_B->calc_mode 0 call Na_rat_smsnn TABFILL Y 3000 0 end function make_Na2_rat_smsnn if (({exists Na2_rat_smsnn})) return end float EK = -0.07 int i, xdivs, di float temp float ox = 0.01 if (({exists Na_rat_smsnn})) move Na_rat_smsnn Na2_rat_smsnn make_Na_rat_smsnn else make_Na_rat_smsnn move Na_rat_smsnn Na2_rat_smsnn end /* Upi change 5 Apr 1992 : functionally the same but this ** works with the hsolver */ xdivs = {getfield Na2_rat_smsnn X_A->xdivs} temp = {getfield Na2_rat_smsnn X_A->invdx} temp = ox*temp di = temp for (i = xdivs; i >= di; i = i - 1) temp = {getfield Na2_rat_smsnn X_A->table[{i - di}]} setfield Na2_rat_smsnn X_A->table[{i}] {temp} temp = {getfield Na2_rat_smsnn X_B->table[{i - di}]} setfield Na2_rat_smsnn X_B->table[{i}] {temp} end xdivs = {getfield Na2_rat_smsnn Y_A->xdivs} temp = {getfield Na2_rat_smsnn Y_A->invdx} temp = ox*temp di = temp for (i = xdivs; i >= di; i = i - 1) temp = {getfield Na2_rat_smsnn Y_A->table[{i - di}]} setfield Na2_rat_smsnn Y_A->table[{i}] {temp} temp = {getfield Na2_rat_smsnn Y_B->table[{i - di}]} setfield Na2_rat_smsnn Y_B->table[{i}] {temp} end setfield Na2_rat_smsnn X_A->sy 0.5 X_B->sy 0.5 Y_A->sy 0.5 \ Y_B->sy 0.5 if (0) // A change below -- UPI Aug3 setfield Na2_rat_smsnn X_A->ox 0.01 X_B->ox 0.01 Y_A->ox 0.01 \ Y_B->ox 0.01 X_A->sy 0.5 X_B->sy 0.5 Y_A->sy 0.5 Y_B->sy 0.5 end end /******************************************************************** ** Transient outward K current - see yamadachan.g ********************************************************************/ // CONSTANTS float V_OFFSET = 0.0 float EK = -0.07 function make_KA_bsg_yka if (({exists KA_bsg_yka})) return end create tabchannel KA_bsg_yka setfield KA_bsg_yka Ek {EK} Gbar {1200.0*SOMA_A} Ik 0 Gk 0 Xpower 1 \ Ypower 1 Zpower 0 setuptau KA_bsg_yka X 1.38e-3 0.0 1.0 -1.0e3 1.0 1.0 \ 0.0 1.0 {0.042 - V_OFFSET} -0.013 setuptau KA_bsg_yka Y 0.150 0.0 1.0 -1.0e3 1.0 1.0 0.0 \ 1.0 {0.110 - V_OFFSET} 0.018 end /******************************************************************** ** ** Non-inactivating Muscarinic K current ** Modified from yamadachan.g by Upinder S. Bhalla - the ** minf curve has been steepened. ** ********************************************************************/ float VKTAU_OFFSET = 0.00 float VKMINF_OFFSET = 0.00 function make_KM_bsg_upi if (({exists KM_bsg_upi})) return end int i float x, dx, y, b create tabchannel KM_bsg_upi setfield KM_bsg_upi Ek {EK} Gbar {1200.0*SOMA_A} Ik 0 Gk 0 Xpower 1 \ Ypower 0 Zpower 0 /* ** Replaced for hsolve compatibility on 5 Apr 1992 ** call KM_bsg_upi TABCREATE X 49 -0.1 0.1 x = -0.1 dx = 0.2/49.0 */ call KM_bsg_upi TABCREATE X 49 -0.1 0.05 x = -0.1 dx = 0.15/49.0 // UPI Aug3 for (i = 0; i <= 49; i = i + 1) y = 1.0/(3.3*({exp {(x + 0.035 - VKTAU_OFFSET)/0.04}}) + {exp {-(x + 0.035 - VKTAU_OFFSET)/0.02}}) setfield KM_bsg_upi X_A->table[{i}] {y} y = 1.0/(1.0 + {exp {-(x + 0.035 - VKMINF_OFFSET)/0.005}}) setfield KM_bsg_upi X_B->table[{i}] {y} x = x + dx end tweaktau KM_bsg_upi X setfield KM_bsg_upi X_A->calc_mode 0 X_B->calc_mode 0 call KM_bsg_upi TABFILL X 3000 0 end /********************************************************************** ** Mitral K current ** Heavily adapted from : ** K current activation from Thompson, J. Physiol 265, 465 (1977) ** (Tritonia (LPl 2 and LPl 3 cells) ** Inactivation from RW Aldrich, PA Getting, and SH Thompson, ** J. Physiol, 291, 507 (1979) ** **********************************************************************/ function make_K_mit_usb// K-current if ({exists K_mit_usb}) return end float EK = -0.07 create tabchannel K_mit_usb setfield K_mit_usb Ek {EK} Gbar {1200*SOMA_A} Ik 0 Gk 0 Xpower 2 \ Ypower 1 Zpower 0 call K_mit_usb TABCREATE X 30 -0.100 0.050 settab2const K_mit_usb X_A 0 12 0.0 //-0.1 thru -0.045=>0.0 setfield K_mit_usb X_A->table[13] 0.00 \ X_A->table[14] 2.87 \ // -0.030 X_A->table[15] 4.68 \ X_A->table[16] 7.46 \ // -0.020 X_A->table[17] 10.07 \ X_A->table[18] 14.27 \ // -0.010 X_A->table[19] 17.87 \ X_A->table[20] 22.9 \ // 0.0 X_A->table[21] 33.6 \ X_A->table[22] 49.3 \ // 0.010 X_A->table[23] 65.6 \ X_A->table[24] 82.0 \ // 0.020 X_A->table[25] 110.0 \ X_A->table[26] 147.1 \ // 0.030 X_A->table[27] 147.1 \ X_A->table[28] 147.1 \ // 0.040 X_A->table[29] 147.1 \ X_A->table[30] 147.1 // 0.050 setfield K_mit_usb \ X_B->table[0] 36.0 \ // -0.100 Volts X_B->table[1] 34.4 \ // -0.095 Volts X_B->table[2] 32.8 \ // -0.090 Volts X_B->table[3] 31.2 \ // -0.085 Volts X_B->table[4] 29.6 \ // -0.080 Volts X_B->table[5] 28.0 \ // -0.075 Volts X_B->table[6] 26.3 \ // -0.070 Volts X_B->table[7] 24.7 \ // -0.065 Volts X_B->table[8] 23.1 \ // -0.060 Volts X_B->table[9] 21.5 \ // -0.055 Volts X_B->table[10] 19.9 \ // -0.050 Volts X_B->table[11] 18.3 \ // -0.045 Volts X_B->table[12] 16.6 \ // -0.040 Volts X_B->table[13] 15.4 \ X_B->table[14] 13.5 \ // -0.030 X_B->table[15] 13.2 \ X_B->table[16] 11.9 \ // -0.020 X_B->table[17] 11.5 \ X_B->table[18] 10.75 \ // -0.010 X_B->table[19] 9.30 \ X_B->table[20] 8.30 \ // 0.00 X_B->table[21] 6.00 \ X_B->table[22] 5.10 \ // 0.010 X_B->table[23] 4.80 \ X_B->table[24] 3.20 \ // 0.020 X_B->table[25] 1.60 \ X_B->table[26] 0.00 \ // 0.030 X_B->table[27] 0.00 \ X_B->table[28] 0.00 \ // 0.040 X_B->table[29] 0.00 \ X_B->table[30] 0.00 // 0.050 /* Setting the calc_mode to NO_INTERP for speed */ setfield K_mit_usb X_A->calc_mode 0 X_B->calc_mode 0 /* tweaking the tables for the tabchan calculation */ tweakalpha K_mit_usb X /* Filling the tables using B-SPLINE interpolation */ call K_mit_usb TABFILL X 3000 0 call K_mit_usb TABCREATE Y 30 -0.100 0.050 settab2const K_mit_usb Y_A 0 11 1.0 //-0.1 thru -0.035 => 1.0 setfield K_mit_usb \ Y_A->table[12] 1.00 \ // -0.040 Volts Y_A->table[13] 0.97 \ // Y_A->table[14] 0.94 \ // -0.030 Volts Y_A->table[15] 0.88 \ Y_A->table[16] 0.75 \ // -0.020 Y_A->table[17] 0.61 \ Y_A->table[18] 0.43 \ // -0.010 Y_A->table[19] 0.305 \ Y_A->table[20] 0.220 \ // 0.00 Y_A->table[21] 0.175 \ Y_A->table[22] 0.155 \ // 0.010 Y_A->table[23] 0.143 \ Y_A->table[24] 0.138 \ // 0.020 Y_A->table[25] 0.137 \ Y_A->table[26] 0.136 \ // 0.030 Y_A->table[27] 0.135 \ Y_A->table[28] 0.135 \ // 0.040 Y_A->table[29] 0.135 \ Y_A->table[30] 0.135 // 0.050 settab2const K_mit_usb Y_B 0 11 0.0 //-0.1 thru -0.045 => 0.0 setfield K_mit_usb \ Y_B->table[12] 0.0 \ // -0.040 Volts Y_B->table[13] 0.03 \ // Y_B->table[14] 0.06 \ // -0.030 Volts Y_B->table[15] 0.12 \ Y_B->table[16] 0.25 \ // -0.020 Y_B->table[17] 0.39 \ Y_B->table[18] 0.57 \ // -0.010 Y_B->table[19] 0.695 \ Y_B->table[20] 0.78 \ // 0.00 Y_B->table[21] 0.825 \ Y_B->table[22] 0.845 \ // 0.010 Y_B->table[23] 0.857 \ Y_B->table[24] 0.862 \ // 0.020 Y_B->table[25] 0.863 \ Y_B->table[26] 0.864 \ // 0.030 Y_B->table[27] 0.865 \ Y_B->table[28] 0.865 \ // 0.040 Y_B->table[29] 0.865 \ Y_B->table[30] 0.865 // 0.050 /* Setting the calc_mode to NO_INTERP for speed */ setfield K_mit_usb Y_A->calc_mode 0 Y_B->calc_mode 0 /* tweaking the tables for the tabchan calculation */ tweakalpha K_mit_usb Y /* Filling the tables using B-SPLINE interpolation */ call K_mit_usb TABFILL Y 3000 0 setfield K_mit_usb X_A->sy 5.0 X_B->sy 5.0 Y_A->sy 5.0 \ Y_B->sy 5.0 Ek {EK} end function make_K2_mit_usb if (({exists K2_mit_usb})) return end float EK = -0.07 if (({exists K_mit_usb})) move K_mit_usb K2_mit_usb make_K_mit_usb else make_K_mit_usb move K_mit_usb K2_mit_usb end setfield K2_mit_usb X_A->sy 20.0 X_B->sy 20.0 Y_A->sy 20.0 \ Y_B->sy 20.0 Ek {EK} end function make_K_slow_usb if (({exists K_slow_usb})) return end float EK = -0.07 if (({exists K_mit_usb})) move K_mit_usb K_slow_usb make_K_mit_usb else make_K_mit_usb move K_mit_usb K_slow_usb end setfield K_slow_usb X_A->sy 1.0 X_B->sy 1.0 Y_A->sy 1.0 \ Y_B->sy 1.0 end //======================================================================== // Tabchan Na Mitral cell channel //======================================================================== function make_Na_mit_usb if (({exists Na_mit_usb})) return end float THRESH = -0.055 /* offset both for erest and for thresh */ float ENA = 0.045 /* Sodium reversal potl */ create tabchannel Na_mit_usb setfield ^ \ Ek {ENA} \ // V Gbar { 1.2e3 * SOMA_A } \ // S Ik 0 \ // A Gk 0 \ // S Xpower 3 \ Ypower 1 \ Zpower 0 setupalpha Na_mit_usb X {320e3*(0.013 + THRESH)} -320e3 -1.0 \ {-1.0*(0.013 + THRESH)} -0.004 {-280e3*(0.040 + THRESH)} \ 280e3 -1.0 {-1.0*(0.040 + THRESH)} 5.0e-3 setupalpha Na_mit_usb Y 128.0 0.0 0.0 {-1.0*(0.017 + THRESH)} \ 0.018 4.0e3 0.0 1.0 {-1.0*(0.040 + THRESH)} -5.0e-3 end //======================================================================== function make_Na2_mit_usb if (({exists Na2_mit_usb})) return end float THRESH = -0.060 /* offset both for erest and for thresh */ float ENA = 0.045 /* Sodium reversal potl */ create tabchannel Na2_mit_usb setfield ^ \ Ek {ENA} \ // V Gbar { 1.2e3 * SOMA_A } \ // S Ik 0 \ // A Gk 0 \ // S Xpower 3 \ Ypower 1 \ Zpower 0 setupalpha Na2_mit_usb X {320e3*(0.013 + THRESH)} -320e3 -1.0 \ {-1.0*(0.013 + THRESH)} -0.004 {-280e3*(0.040 + THRESH)} \ 280e3 -1.0 {-1.0*(0.040 + THRESH)} 5.0e-3 setupalpha Na2_mit_usb Y 128.0 0.0 0.0 \ {-1.0*(0.017 + THRESH)} 0.018 4.0e3 0.0 1.0 \ {-1.0*(0.040 + THRESH)} -5.0e-3 end //======================================================================== // CONSTANTS float EGlu = 0.045 float EGABA_1 = -0.080 float EGABA_2 = -0.080 float SOMA_A = 1e-9 float GGlu = SOMA_A*50 float GGABA_1 = SOMA_A*50 float GGABA_2 = SOMA_A*50 //=================================================================== // SYNAPTIC CHANNELS (Values guessed at) //=================================================================== function make_glu_mit_usb if (({exists glu_mit_usb})) return end // for receptor input only create channelC2 glu_mit_usb setfield glu_mit_usb \ Ek {EGlu} \ tau1 { 4.0e-3 } \ // sec tau2 { 4.0e-3 } \ // sec gmax {GGlu} // Siemens end function make_GABA_1_mit_usb if (({exists GABA_1_mit_usb})) return end create ddsyn GABA_1_mit_usb // for both dd and ax inputs call GABA_1_mit_usb TABCREATE 10 -0.065 0.05 setfield GABA_1_mit_usb \ Ek { EGABA_1 } \ tau1 { 10.0e-3 } \ // sec tau2 { 10.0e-3 } \ // sec gmax {GGABA_1} \ // Siemens transf->table[0] 0 \ // Setting up the table for transf->table[1] 0.02 \ // transforming from presyn Vm to transf->table[2] 0.05 \ // activation. transf->table[3] 0.1 \ transf->table[4] 0.2 \ transf->table[5] 0.5 \ transf->table[6] 0.8 \ transf->table[7] 0.9 \ transf->table[8] 0.95 \ transf->table[9] 0.98 \ transf->table[10] 1 call GABA_1_mit_usb TABFILL 1000 0 end function make_GABA_2_mit_usb if (({exists GABA_2_mit_usb})) return end create ddsyn GABA_2_mit_usb // for both dd and ax inputs call GABA_2_mit_usb TABCREATE 10 -0.065 0.05 setfield GABA_2_mit_usb \ Ek { EGABA_2 } \ tau1 { 10.0e-3 } \ // sec tau2 { 10.0e-3 } \ // sec gmax {GGABA_2} \ // Siemens transf->table[0] 0 \ // Setting up the table for transf->table[1] 0.05 \ // transforming from presyn Vm to transf->table[2] 0.1 \ // activation. transf->table[3] 0.2 \ transf->table[4] 0.5 \ transf->table[5] 0.7 \ transf->table[6] 0.8 \ transf->table[7] 0.9 \ transf->table[8] 0.95 \ transf->table[9] 0.98 \ transf->table[10] 1 call GABA_2_mit_usb TABFILL 1000 0 end function make_glu_gran_usb if (({exists glu_gran_usb})) return end create ddsyn glu_gran_usb // for dd, ax, and centrif inputs call glu_gran_usb TABCREATE 10 -0.070 0.05 // sec // sec // Siemens // Setting up the table for // transforming from presyn Vm to // activation. setfield glu_gran_usb Ek {EGlu} tau1 {4.0e-3} tau2 {6.0e-3} \ gmax {GGlu} transf->table[0] 0 transf->table[1] 0.05 \ transf->table[2] 0.1 transf->table[3] 0.2 \ transf->table[4] 0.5 transf->table[5] 0.7 \ transf->table[6] 0.8 transf->table[7] 0.9 \ transf->table[8] 0.95 transf->table[9] 0.98 \ transf->table[10] 1 // for dd, ax, and centrif inputs setfield glu_gran_usb \ Ek {EGlu} \ tau1 { 4.0e-3 } \ // sec tau2 { 6.0e-3 } \ // sec gmax {GGlu} \ // Siemens transf->table[0] 0 \ // Setting up the table for transf->table[1] 0.05 \ // transforming from presyn Vm to transf->table[2] 0.1 \ // activation. transf->table[3] 0.2 \ transf->table[4] 0.5 \ transf->table[5] 0.7 \ transf->table[6] 0.8 \ transf->table[7] 0.9 \ transf->table[8] 0.95 \ transf->table[9] 0.98 \ transf->table[10] 1 call glu_gran_usb TABFILL 1000 0 end function make_glu_pg_usb if (({exists glu_pg_usb})) return end create ddsyn glu_pg_usb // for dd, ax, and centrif inputs call glu_pg_usb TABCREATE 10 -0.070 0.05 setfield glu_pg_usb \ Ek {EGlu} \ tau1 { 4.0e-3 } \ // sec tau2 { 6.0e-3 } \ // sec gmax {GGlu} \ // Siemens transf->table[0] 0 \ // Setting up the table for transf->table[1] 0.02 \ // transforming from presyn Vm to transf->table[2] 0.05 \ // activation. transf->table[3] 0.1 \ transf->table[4] 0.2 \ transf->table[5] 0.5 \ transf->table[6] 0.8 \ transf->table[7] 0.9 \ transf->table[8] 0.95 \ transf->table[9] 0.98 \ transf->table[10] 1 call glu_pg_usb TABFILL 1000 0 end function make_olf_receptor if (({exists olf_receptor})) return end float ENa = 0.045 // Volts create receptor2 olf_receptor setfield ^ \ Ek {ENa} \ tau1 0.05 \ //sec tau2 0.1 \ //sec gmax 5e-8 \ //Siemens modulation 1 // unitless end function make_spike if (({exists spike})) return end create spikegen spike setfield spike \ thresh -0.00 \ // V abs_refract 10e-3 \ // sec output_amp 1 end //======================================================================== function make_Kca_mit_usb if (({exists Kca_mit_usb})) return end float EK = -0.08 create vdep_channel Kca_mit_usb setfield ^ \ Ek {EK} \ // V gbar { 360.0 * SOMA_A } \ // S Ik 0 \ // A Gk 0 // S create table Kca_mit_usb/qv call Kca_mit_usb/qv TABCREATE 100 -0.1 0.1 int i float x, dx, y x = -0.1 dx = 0.2/100.0 for (i = 0; i <= 100; i = i + 1) y = {exp {(x - {EREST_ACT})/0.027}} setfield Kca_mit_usb/qv table->table[{i}] {y} x = x + dx end create tabgate Kca_mit_usb/qca setupgate Kca_mit_usb/qca alpha {5.0e5*0.015} \ -5.0e5 -1.0 -0.015.0 -0.0013 -size 1000 -range 0.0 0.01 call Kca_mit_usb/qca TABCREATE beta 1 -1 100 setfield Kca_mit_usb/qca beta->table[0] 50 setfield Kca_mit_usb/qca beta->table[1] 50 addmsg Kca_mit_usb/qv Kca_mit_usb/qca PRD_ALPHA output addmsg Kca_mit_usb/qca Kca_mit_usb MULTGATE m 1 addfield Kca_mit_usb addmsg1 addfield Kca_mit_usb addmsg2 setfield Kca_mit_usb \ addmsg1 "../Ca_mit_conc qca VOLTAGE Ca" \ addmsg2 ".. qv INPUT Vm" end //======================================================================== // Ca conc - mitral cell //======================================================================== function make_Ca_mit_conc if (({exists Ca_mit_conc})) return end create Ca_concen Ca_mit_conc setfield Ca_mit_conc \ tau 0.01 \ // sec B 5.2e-6 \ // Curr to conc Ca_base 0.00001 addfield Ca_mit_conc addmsg1 setfield Ca_mit_conc \ addmsg1 "../LCa3_mit_usb . I_Ca Ik" end