//genesis /* FILE INFORMATION ** Several versions of Mitral cell voltage-dependent channels. ** Implemented by : Upinder S. Bhalla. ** ** The mitral cell channels have been adapted from Traub's channels for ** the hippocampal pyramidal cell : ** R.D.Traub, Neuroscience Vol 7 No 5 pp 1233-1242 (1982) ** ** This file depends on functions and constants defined in defaults.g */ // CONSTANTS /* mitral cell resting potl */ float EREST_ACT = -0.065 float ENA = 0.045 float EK = -0.090 float ECA = 0.070 float SOMA_A = 1e-9 /* Square meters */ //======================================================================== // ACTIVE NA CHANNEL - MITRAL //======================================================================== function make_Na_mit_hh if (({exists Na_mit_hh})) return end create hh_channel Na_mit_hh setfield Na_mit_hh Ek {ENA} Gbar {1.2e3*SOMA_A} Xpower 3.0 \ Ypower 1.0 X_alpha_FORM {LINOID} X_alpha_A -0.32e6 \ X_alpha_B -0.004 X_alpha_V0 {0.013 + EREST_ACT} \ X_beta_FORM {LINOID} X_beta_A 0.28e6 X_beta_B 5.0e-3 \ X_beta_V0 {40.0e-3 + EREST_ACT} Y_alpha_FORM {EXPONENTIAL} \ Y_alpha_A 128.0 Y_alpha_B -18.0e-3 \ Y_alpha_V0 {0.017 + EREST_ACT} Y_beta_FORM {SIGMOID} \ Y_beta_A 4.0e3 Y_beta_B -5.0e-3 \ Y_beta_V0 {40.0e-3 + EREST_ACT} end //======================================================================== // ACTIVE K CHANNEL - MITRAL //======================================================================== function make_K_mit_hh if (({exists K_mit_hh})) return end create hh_channel K_mit_hh setfield K_mit_hh Ek {EK} Gbar {360.0*SOMA_A} Xpower 4.0 \ Ypower 0.0 X_alpha_FORM {LINOID} X_alpha_A -32.0e3 \ X_alpha_B -5.0e-3 X_alpha_V0 {0.015 + EREST_ACT} \ X_beta_FORM {EXPONENTIAL} X_beta_A 500.0 X_beta_B -40.0e-3 \ X_beta_V0 {0.010 + EREST_ACT} Y_alpha_FORM {EXPONENTIAL} \ Y_alpha_A 128.0 Y_alpha_B -18.0e-3 \ Y_alpha_V0 {0.017 + EREST_ACT} Y_beta_FORM {SIGMOID} \ Y_beta_A 4.0e3 Y_beta_B -5.0e-3 \ Y_beta_V0 {40.0e-3 + EREST_ACT} end //======================================================================== // vdep_gate versions of the mitral cell channels //======================================================================== //======================================================================== // Active Na Channel //======================================================================== function make_Na_mit_vdep if (({exists Na_mit_vdep})) return end create vdep_channel Na_mit_vdep setfield ^ Ek {ENA} gbar {1.2e3*SOMA_A} Ik 0 Gk 0 create vdep_gate Na_mit_vdep/m setfield ^ alpha_A {320e3*(0.013 + EREST_ACT)} alpha_B -320e3 \ alpha_C -1.0 alpha_D {-1.0*(0.013 + EREST_ACT)} \ alpha_F -0.004 beta_A {-280e3*(0.040 + EREST_ACT)} \ beta_B 280e3 beta_C -1.0 beta_D {-1.0*(0.040 + EREST_ACT)} \ beta_F 5.0e-3 instantaneous 0 create vdep_gate Na_mit_vdep/h setfield ^ alpha_A 128.0 alpha_B 0.0 alpha_C 0.0 \ alpha_D {-1.0*(0.017 + EREST_ACT)} alpha_F 0.018 \ beta_A 4.0e3 beta_B 0.0 beta_C 1.0 \ beta_D {-1.0*(0.040 + EREST_ACT)} beta_F -5.0e-3 \ instantaneous 0 addmsg Na_mit_vdep/m Na_mit_vdep MULTGATE m 3 addmsg Na_mit_vdep/h Na_mit_vdep MULTGATE m 1 addfield Na_mit_vdep addmsg1 addfield Na_mit_vdep addmsg2 setfield Na_mit_vdep addmsg1 ".. m VOLTAGE Vm" \ addmsg2 ".. h VOLTAGE Vm" end //======================================================================== // K Mitral cell channel //======================================================================== function make_K_mit_vdep if (({exists K_mit_vdep})) return end create vdep_channel K_mit_vdep setfield ^ Ek {EK} gbar {360.0*SOMA_A} Ik 0 Gk 0 create vdep_gate K_mit_vdep/n setfield ^ alpha_A {32.0e3*(0.015 + EREST_ACT)} alpha_B -32.0e3 \ alpha_C -1.0 alpha_D {-1.0*(0.015 + EREST_ACT)} \ alpha_F -0.005 beta_A 500.0 beta_B 0.0 beta_C 0.0 \ beta_D {-1.0*(0.010 + EREST_ACT)} beta_F 40.0e-3 \ instantaneous 0 create vdep_gate K_mit_vdep/y1 setfield ^ alpha_A 28.0 alpha_B 0.0 alpha_C 0.0 \ alpha_D {-1.0*(0.015 + EREST_ACT)} alpha_F -0.015 \ beta_A 400.0 beta_B 0.0 beta_C 1.0 \ beta_D {-1.0*(0.040 + EREST_ACT)} beta_F -0.01 \ instantaneous 0 create vdep_gate K_mit_vdep/y2 setfield ^ alpha_A 2000.0 alpha_B 0.0 alpha_C 1.0 \ alpha_D {-1.0*(0.085 + EREST_ACT)} alpha_F -0.010 \ beta_A 400.0 beta_B 0.0 beta_C 1.0 \ beta_D {-1.0*(0.040 + EREST_ACT)} beta_F -0.01 \ instantaneous 0 addmsg K_mit_vdep/n K_mit_vdep MULTGATE m 4 addfield K_mit_vdep addmsg1 setfield K_mit_vdep addmsg1 ".. n VOLTAGE Vm" /* Again, the limitations in the vdep_gate formalism make it impossible ** to implement the K channel in a way closer to the original Traub model */ /* addmsg K_mit_vdep/y1 K_mit_vdep MULTGATE m 1 addmsg K_mit_vdep/y2 K_mit_vdep MULTGATE m 1 */ end //======================================================================== // Tabulated versions of the Mitral cell channels //======================================================================== // Tabulated Na Mitral cell channel //======================================================================== function make_Na_mit_tab if (({exists Na_mit_tab})) return end create vdep_channel Na_mit_tab setfield ^ Ek {ENA} gbar {1.2e3*SOMA_A} Ik 0 Gk 0 create tabgate Na_mit_tab/m setup_table Na_mit_tab/m alpha 100 {320e3*(0.013 + EREST_ACT)} \ -320e3 -1.0 {-1.0*(0.013 + EREST_ACT)} -0.004 setup_table Na_mit_tab/m beta 100 {-280e3*(0.040 + EREST_ACT)} \ 280e3 -1.0 {-1.0*(0.040 + EREST_ACT)} 5.0e-3 create tabgate Na_mit_tab/h setup_table Na_mit_tab/h alpha 100 128.0 0.0 0.0 \ {-1.0*(0.017 + EREST_ACT)} 0.018 setup_table Na_mit_tab/h beta 100 4.0e3 0.0 1.0 \ {-1.0*(0.040 + EREST_ACT)} -5.0e-3 addmsg Na_mit_tab/m Na_mit_tab MULTGATE m 3 addmsg Na_mit_tab/h Na_mit_tab MULTGATE m 1 addfield Na_mit_tab addmsg1 addfield Na_mit_tab addmsg2 setfield Na_mit_tab addmsg1 ".. m VOLTAGE Vm" \ addmsg2 ".. h VOLTAGE Vm" end //======================================================================== // Tabulated Ca Channel - mitral cell //======================================================================== function make_Ca_mit_tab if (({exists Ca_mit_tab})) return end create vdep_channel Ca_mit_tab setfield ^ Ek {ECA} gbar {1.2e3*SOMA_A} Ik 0 Gk 0 create tabgate Ca_mit_tab/s /* there is a singularity at x=0, so I hack around that by using ** an odd number of sample points */ setup_table Ca_mit_tab/s alpha 101 {40e3*(0.060 + EREST_ACT)} \ -40e3 -1.0 {-1.0*(0.060 + EREST_ACT)} -0.010 setup_table Ca_mit_tab/s beta 101 {-5e3*(0.045 + EREST_ACT)} 5e3 \ -1.0 {-1.0*(0.045 + EREST_ACT)} 10.0e-3 create tabgate Ca_mit_tab/r call Ca_mit_tab/r TABCREATE alpha 1 -1 1000 setfield Ca_mit_tab/r alpha->table[0] 5.0 setfield Ca_mit_tab/r alpha->table[1] 5.0 setupgate Ca_mit_tab/r beta {25.0*200.0} -25.0 \ -1.0 -200.0 -20.0 -size 1000 -range -1 1000 /* create Ca_concen Ca_mit_tab/conc set Ca_mit_tab/conc \ tau 0.01 \ // sec B {5.2e-6/(SOMA_XA* \ SOMA_L)} \ // Curr to conc Ca_base 0.0 */ addmsg Ca_mit_tab/s Ca_mit_tab MULTGATE m 5 addmsg Ca_mit_tab/r Ca_mit_tab MULTGATE m 1 addfield Ca_mit_tab addmsg1 addfield Ca_mit_tab addmsg2 addfield Ca_mit_tab addmsg3 setfield Ca_mit_tab \ addmsg1 "../Ca_mit_conc r VOLTAGE Ca" \ addmsg2 ". ../Ca_mit_conc I_Ca Ik" \ addmsg3 ".. s VOLTAGE Vm" end //======================================================================== // Ca conc - mitral cell //======================================================================== function make_Ca_mit_conc if (({exists Ca_mit_conc})) return end create Ca_concen Ca_mit_conc // sec // Curr to conc setfield Ca_mit_conc tau 0.01 B 5.2e-6 Ca_base 0.00001 end //======================================================================== // Tabulated K channel - Mitral cell //======================================================================== function make_K_mit_tab if (({exists K_mit_tab})) return end create vdep_channel K_mit_tab setfield ^ Ek {EK} gbar {360.0*SOMA_A} Ik 0 Gk 0 create tabgate K_mit_tab/n setup_table K_mit_tab/n alpha 100 {32e3*(0.015 + EREST_ACT)} \ -32e3 -1.0 {-1.0*(0.015 + EREST_ACT)} -0.005 setup_table K_mit_tab/n beta 100 500.0 0.0 0.0 \ {-1.0*(0.010 + EREST_ACT)} 40.0e-3 create table K_mit_tab/ya2 call K_mit_tab/ya2 TABCREATE 100 -0.1 0.1 setup_table3 K_mit_tab/ya2 table 100 -0.1 0.1 2000 0 1 \ {-1.0*(0.085 + EREST_ACT)} -0.010 create tabgate K_mit_tab/y setup_table K_mit_tab/y alpha 100 28 0 0 \ {-1.0*(0.015 + EREST_ACT)} 0.015 setup_table K_mit_tab/y beta 100 400 0 1 \ {-1.0*(0.040 + EREST_ACT)} -0.010 addmsg K_mit_tab/n K_mit_tab MULTGATE m 4 addmsg K_mit_tab/y K_mit_tab MULTGATE m 1 addmsg K_mit_tab/ya2 K_mit_tab/y SUM_ALPHA output addfield K_mit_vdep addmsg1 addfield K_mit_vdep addmsg2 addfield K_mit_vdep addmsg3 setfield K_mit_vdep addmsg1 ".. n VOLTAGE Vm" \ addmsg2 ".. y VOLTAGE Vm" \ addmsg3 ".. ya2 INPUT Vm" end //======================================================================== // Tabulated Ca dependent K - channel. //======================================================================== function make_Kca_mit_tab if (({exists Kca_mit_tab})) return end create vdep_channel Kca_mit_tab setfield ^ Ek {EK} gbar {360.0*SOMA_A} Ik 0 Gk 0 create table Kca_mit_tab/qv call Kca_mit_tab/qv TABCREATE 100 -0.1 0.1 int i float x, dx, y x = -0.1 dx = 0.2/100.0 for (i = 0; i <= 100; i = i + 1) y = {exp {(x - EREST_ACT)/0.027}} setfield Kca_mit_tab/qv table->table[{i}] {y} x = x + dx end create tabgate Kca_mit_tab/qca setupgate Kca_mit_tab/qca alpha {5.0*200.0} -5.0 \ -1.0 -200.0 -20.0 -size 1000 -range -1 100 call Kca_mit_tab/qca TABCREATE beta 1 -1 100 setfield Kca_mit_tab/qca beta->table[0] 2.0 setfield Kca_mit_tab/qca beta->table[1] 2.0 addmsg Kca_mit_tab/qv Kca_mit_tab/qca PRD_ALPHA output addmsg Kca_mit_tab/qca Kca_mit_tab MULTGATE m 1 addfield Kca_mit_tab addmsg1 addfield Kca_mit_tab addmsg2 setfield Kca_mit_tab \ addmsg1 "../Ca_mit_conc qca VOLTAGE Ca" \ addmsg2 ".. qv INPUT Vm" end //======================================================================== // Gate version of Ca T channel - not [Ca] dependent. //========================================================================