# A simplified model of NMDA oscillations in lamprey locomotor network neurons # Mikael Huss 070315 # Components: NMDA, KCa, Kv, leak, Cav, KCa channels # KCa gets activated by both NMDA-Ca and Cav. # Voltage equation (the factor 1000 is to get the time in seconds) dv/dt= 1000 * (p(v)*gnmda*(enmda-v) + gkca*act_kca(C)*(ek-v) + gk*act_k(v)*(ek-v) + gleak*(eleak-v) + gcav*act_cav(v)*(eca-v) + ibias) dc/dt= inmda*p(v)*gnmda*(enmda-v) + icav*gcav*act_cav(v)*(eca-v) - C/tau param gnmda=0.005, gkca=20, gk=8, gcav=0.005, gleak=0.001 param tc=0.02, tau=1, inmda=0.2, icav=0.3, ibias=0 param enmda=0, eleak=-70, ek=-80, eca=150, param vmhalf=-60, vkhalf=-1, vcahalf=-45 param sm=.3, sk=-7, sca=-5 # Magnesium block equation p(v)=exp(sm*(v-vmhalf))/(1+exp(sm*(v-vmhalf))) # Kv current (assumed to be a combination of delayed rectifier and A-current) act_k(v) = 1/(1+exp((v-vkhalf)/sk)) # Assume that we have a calcium component with half-activation at -45 mV # (Corresponding to the component which "starts to activate between # -60 and -50 mV"; El Manira and Bussieres 1997) act_cav(v) = 1/(1+exp((v-vcahalf)/sca)) act_kca(C)=tc*C aux act=act_kca(C) init v=-70 param v(0)=-70 c(0)=0 @ METH=cvode, ATOLER=1e-6, TOLER=1e-6, DT=0.02 @ TOTAL=30, XP=t, YP=v, MAXSTOR=500000, BOUND=50000, BELL=0 @ XLO=0, XHI=30, YLO=-80, YHI=0 @ ntst=400, nmax=20000, dsmin=1e-15, dsmax=.1, ds=1e-4 @ epsl=1e-7, epsu=1e-7, epss=1e-5 @ parmin=0, parmax=0.8 @ autoxmin=0, autoxmax=0.8, autoymin=-80, autoymax=0, autovar=v