: kf_a.mod is the fast inactivating K+ current
: from schild 1994 & Bin Feng 2008, A-type K current
NEURON {
SUFFIX kf_a
USEION k READ ek WRITE ik
RANGE gbar
RANGE i
RANGE tau_p, pinf, tau_q, qinf
}
UNITS {
(S) = (siemens)
(molar) = (1/liter)
(mM) = (millimolar)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 0.006 : =30e-9/(100e-12*1e8) (S/cm2) : 30(nS)/100(um)^2
A_pinf = 1.0 : for pinf
B_pinf = -15.79 (mV) : original 5mV
C_pinf = -10 (mV)
A_ptau = 5.0 (ms) : for tau_p
B_ptau = -65 (mV)
C_ptau = 0.022 (/mV)
D_ptau = 1.5 (ms)
A_qinf = 1.0 : for qinf
B_qinf = -58.0 (mV)
C_qinf = 7.0 (mV)
A_qtau = 45.0 (ms) : for tau_q
B_qtau = -10 (mV)
C_qtau = 0.0035 (/mV)
D_qtau = 10.5 (ms)
Q10=1.93 (1)
Q10TEMP = 24 (degC)
}
ASSIGNED {
v (mV) : NEURON provides this
ek (mV)
ik (mA/cm2)
i (mA/cm2)
tau_p (ms)
tau_q (ms)
pinf
qinf
celsius (degC)
qt (1)
}
STATE {p q}
BREAKPOINT {
SOLVE states METHOD cnexp
i = gbar*p*p*p*q*(v-ek)
ik = i
}
INITIAL {
: assume that equilibrium has been reached
qt = Q10^((celsius-Q10TEMP)/10)
rates(v)
p = pinf
q = qinf
}
DERIVATIVE states {
rates(v)
p' = (pinf - p)/tau_p
q' = (qinf - q)/tau_q
}
FUNCTION rates(Vm (mV)) (/ms) {
UNITSOFF
qt = Q10^((celsius-Q10TEMP)/10)
pinf = A_pinf/(1+exp((Vm - B_pinf)/C_pinf))
qinf = A_qinf/(1+exp((Vm - B_qinf)/C_qinf))
tau_p = (A_ptau * exp (-(Vm - B_ptau)^2*(C_ptau)^2) + D_ptau)/qt
tau_q = (A_qtau * exp (-(Vm - B_qtau)^2*(C_qtau)^2) + D_qtau)/qt
UNITSON
}