: slow-adapting ms channel
: gating probability from Haselwandter and Phillips 2013
: PLOS Computational Biology 9(5): e1003055 (2013).
: relative Ina and Ik were calculated based upon GHK equation assuming equal permeability
NEURON {
SUFFIX ms_v1
USEION na READ nai, nao, ena WRITE ina
USEION k READ ki, ko, ek WRITE ik
RANGE p_m, p_m_inf, tau_m, tension0, slope_m, A_m
RANGE m1, m2, tau_t
RANGE gbar
RANGE lamda, dlamda, tension
RANGE Pna2k, im
}
UNITS {
(S) = (siemens)
(molar) = (1/liter)
(mM) = (millimolar)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 0.01 (S/cm2)
m1=0.2 (1)
m2=0.6 (ms)
tau_t = 30 (ms)
slope_m =2.09 (1)
A_m = 300 (ms)
: ::::::::::::::::::: the variables below all need to be played during simulation
lamda = 1 (1)
dlamda = 0 (1/ms)
: ::::::::::::::::::::::::::::::::::
tension0 = 10.45 (1)
Q10=3 (1)
Q10TEMP = 24 (degC)
}
ASSIGNED {
v (mV)
i (mA/cm2)
ena (mV)
nai (mM)
nao (mM)
ina (mA/cm2)
ek (mV)
ki (mM)
ko (mM)
ik (mA/cm2)
im (mA/cm2)
Pna2k (1)
p_m_inf (1)
tau_m (ms)
}
STATE { tension (1)
p_m (1) }
BREAKPOINT {
SOLVE state METHOD cnexp
::::::::: portions of Ina and Ik is determined by their relative driving force
Pna2k = (v-ena)/(v-ek)
if (Pna2k < 0 ) {Pna2k = - Pna2k}
ik =gbar*p_m*(1/(1+Pna2k))*(v - ek)
ina =gbar*p_m*(Pna2k/(1+Pna2k))*(v - ena)
im=ik+ina
}
DERIVATIVE state {
p_m_inf = 1/(1+exp((tension0-tension)/slope_m))
tau_m = A_m/(exp((tension -tension0)/slope_m/2)+exp((tension0 -tension)/slope_m/2))
p_m' = (p_m_inf - p_m)/tau_m
tension' = (m1*lamda - m1 + m2*dlamda - tension)/tau_t
}
INITIAL {
tension = 0
p_m = 1/(1+exp(tension0/slope_m))
}