FUNCTION ran_gamma(s, first) RESULT(fn_val) USE random IMPLICIT NONE ! Uses the algorithm in ! Marsaglia, G. and Tsang, W.W. (2000) ! Generates a random gamma deviate for shape parameter s >= 1. REAL, INTENT(IN) :: s LOGICAL, INTENT(IN) :: first REAL :: fn_val ! Local variables REAL, SAVE :: c, d REAL :: u, v, x IF (s < 1.0) THEN WRITE(*, *) 'Shape parameter must be >= 1' STOP END IF IF (first) THEN d = s - 1./3. c = 1.0/SQRT(9.0*d) END IF ! Start of main loop DO ! Generate v = (1+cx)^3 where x is random normal; repeat if v <= 0. DO x = random_normal() v = (1.0 + c*x)**3 IF (v > 0.0) EXIT END DO ! Generate uniform variable U CALL RANDOM_NUMBER(u) IF (u < 1.0 - 0.0331*x**4) THEN fn_val = d*v EXIT ELSE IF (LOG(u) < 0.5*x**2 + d*(1.0 - v + LOG(v))) THEN fn_val = d*v EXIT END IF END DO RETURN END FUNCTION ran_gamma PROGRAM test_rgamma USE random IMPLICIT NONE INTERFACE FUNCTION ran_gamma(s, first) RESULT(fn_val) USE random IMPLICIT NONE REAL, INTENT(IN) :: s LOGICAL, INTENT(IN) :: first REAL :: fn_val END FUNCTION ran_gamma END INTERFACE REAL, PARAMETER :: shape(8) = (/ 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0, 50.0 /) INTEGER :: i, j REAL :: aver, dev, sumsq, start, finish, x DO i = 1, 8 WRITE(*, *) WRITE(*, '(a, f7.1)') ' Shape parameter = ', shape(i) ! First time the new algorithm CALL CPU_TIME(start) x = ran_gamma(shape(i), .TRUE.) aver = x sumsq = 0.0 DO j = 2, 1000000 x = ran_gamma(shape(i), .FALSE.) dev = x - aver aver = aver + dev/j sumsq = sumsq + dev*(x-aver) END DO CALL CPU_TIME(finish) sumsq = SQRT(sumsq/999999.) WRITE(*, *) 'Using Marsaglia & Tsang algorithm' WRITE(*, '(a, f7.2, a, 2f7.3)') & ' Time = ', finish - start, 'sec. Mean & st.devn. = ', aver, sumsq ! Repeat using algorithm in module random CALL CPU_TIME(start) x = random_gamma(shape(i), .TRUE.) aver = x sumsq = 0.0 DO j = 2, 1000000 x = random_gamma(shape(i), .FALSE.) dev = x - aver aver = aver + dev/j sumsq = sumsq + dev*(x-aver) END DO CALL CPU_TIME(finish) sumsq = SQRT(sumsq/999999.) WRITE(*, *) 'Using algorithm in module random' WRITE(*, '(a, f7.2, a, 2f7.3)') & ' Time = ', finish - start, 'sec. Mean & st.devn. = ', aver, sumsq END DO STOP END PROGRAM test_rgamma DAGPUNAR PROG ------------- FUNCTION random_gamma(s, b, first) RESULT(fn_val) ! Adapted from Fortran 77 code from the book: ! Dagpunar, J. 'Principles of random variate generation' ! Clarendon Press, Oxford, 1988. ISBN 0-19-852202-9 ! N.B. This version is in `double precision' and includes scaling ! FUNCTION GENERATES A RANDOM GAMMA VARIATE. ! CALLS EITHER random_gamma1 (S > 1.0) ! OR random_exponential (S = 1.0) ! OR random_gamma2 (S < 1.0). ! S = SHAPE PARAMETER OF DISTRIBUTION (0 < REAL). ! B = Scale parameter IMPLICIT NONE INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60) REAL (dp), INTENT(IN) :: s, b LOGICAL, INTENT(IN) :: first REAL (dp) :: fn_val ! Local parameters REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp IF (s <= zero) THEN WRITE(*, *) 'SHAPE PARAMETER VALUE MUST BE POSITIVE' STOP END IF IF (s >= one) THEN fn_val = random_gamma1(s, first) ELSE IF (s < one) THEN fn_val = random_gamma2(s, first) END IF ! Now scale the random variable fn_val = b * fn_val RETURN CONTAINS FUNCTION random_gamma1(s, first) RESULT(fn_val) ! Adapted from Fortran 77 code from the book: ! Dagpunar, J. 'Principles of random variate generation' ! Clarendon Press, Oxford, 1988. ISBN 0-19-852202-9 ! FUNCTION GENERATES A RANDOM VARIATE IN [0,INFINITY) FROM ! A GAMMA DISTRIBUTION WITH DENSITY PROPORTIONAL TO GAMMA**(S-1)*EXP(-GAMMA), ! BASED UPON BEST'S T DISTRIBUTION METHOD ! S = SHAPE PARAMETER OF DISTRIBUTION ! (1.0 < REAL) REAL (dp), INTENT(IN) :: s LOGICAL, INTENT(IN) :: first REAL (dp) :: fn_val ! Local variables REAL (dp) :: d, r, g, f, x REAL (dp), SAVE :: b, h REAL (dp), PARAMETER :: sixty4 = 64.0_dp, three = 3.0_dp, pt75 = 0.75_dp, & two = 2.0_dp, half = 0.5_dp IF (s <= one) THEN WRITE(*, *) 'IMPERMISSIBLE SHAPE PARAMETER VALUE' STOP END IF IF (first) THEN ! Initialization, if necessary b = s - one h = SQRT(three*s - pt75) END IF DO CALL RANDOM_NUMBER(r) g = r - r*r IF (g <= zero) CYCLE f = (r - half)*h/SQRT(g) x = b + f IF (x <= zero) CYCLE CALL RANDOM_NUMBER(r) d = sixty4*g*(r*g)**2 IF (d <= zero) EXIT IF (d*x < x - two*f*f) EXIT IF (LOG(d) < two*(b*LOG(x/b) - f)) EXIT END DO fn_val = x RETURN END FUNCTION random_gamma1 FUNCTION random_gamma2(s, first) RESULT(fn_val) ! Adapted from Fortran 77 code from the book: ! Dagpunar, J. 'Principles of random variate generation' ! Clarendon Press, Oxford, 1988. ISBN 0-19-852202-9 ! FUNCTION GENERATES A RANDOM VARIATE IN [0,INFINITY) FROM ! A GAMMA DISTRIBUTION WITH DENSITY PROPORTIONAL TO ! GAMMA2**(S-1) * EXP(-GAMMA2), ! USING A SWITCHING METHOD. ! S = SHAPE PARAMETER OF DISTRIBUTION ! (REAL < 1.0) REAL (dp), INTENT(IN) :: s LOGICAL, INTENT(IN) :: first REAL (dp) :: fn_val ! Local variables REAL (dp) :: r, x, w REAL (dp), SAVE :: a, p, c, uf, vr, d REAL (dp), PARAMETER :: vsmall = EPSILON(one) IF (s <= zero .OR. s >= one) THEN WRITE(*, *) 'SHAPE PARAMETER VALUE OUTSIDE PERMITTED RANGE' STOP END IF IF (first) THEN ! Initialization, if necessary a = one - s p = a/(a + s*EXP(-a)) IF (s < vsmall) THEN WRITE(*, *) 'SHAPE PARAMETER VALUE TOO SMALL' STOP END IF c = one/s uf = p*(vsmall/a)**s vr = one - vsmall d = a*LOG(a) END IF DO CALL RANDOM_NUMBER(r) IF (r >= vr) THEN CYCLE ELSE IF (r > p) THEN x = a - LOG((one - r)/(one - p)) w = a*LOG(x)-d ELSE IF (r > uf) THEN x = a*(r/p)**c w = x ELSE fn_val = zero RETURN END IF CALL RANDOM_NUMBER(r) IF (one-r <= w .AND. r > zero) THEN IF (r*(w + one) >= one) CYCLE IF (-LOG(r) <= w) CYCLE END IF EXIT END DO fn_val = x RETURN END FUNCTION random_gamma2 END FUNCTION random_gamma PROGRAM demo_gamma ! Demo program to generate a small smaple of random gamma's IMPLICIT NONE INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60) REAL (dp) :: shape, scale, rg(100), avge, mean LOGICAL :: first INTEGER :: i, order(100) INTERFACE FUNCTION random_gamma(s, b, first) RESULT(fn_val) IMPLICIT NONE INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60) REAL (dp), INTENT(IN) :: s, b LOGICAL, INTENT(IN) :: first REAL (dp) :: fn_val END FUNCTION random_gamma RECURSIVE SUBROUTINE quick_sort(list, order) IMPLICIT NONE INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60) REAL (dp), DIMENSION (:), INTENT(IN OUT) :: list INTEGER, DIMENSION (:), INTENT(OUT) :: order END SUBROUTINE quick_sort END INTERFACE WRITE(*, '(a)', ADVANCE='NO') ' Enter the shape & scale parameter values: ' READ(*, *) shape, scale first = .TRUE. DO i = 1, 100 rg(i) = random_gamma(shape, scale, first) first = .FALSE. END DO CALL quick_sort(rg, order) WRITE(*, '(" ", 10f7.3)') rg mean = shape * scale avge = SUM( rg ) / 100._dp WRITE(*, '(a, g12.5, a, g12.5)') & ' Population mean = ', mean, ' Sample mean = ', avge STOP END PROGRAM demo_gamma RECURSIVE SUBROUTINE quick_sort(list, order) ! Quick sort routine from: ! Brainerd, W.S., Goldberg, C.H. & Adams, J.C. (1990) "Programmer's Guide to ! Fortran 90", McGraw-Hill ISBN 0-07-000248-7, pages 149-150. ! Modified by Alan Miller to include an associated integer array which gives ! the positions of the elements in the original order. IMPLICIT NONE INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60) REAL (dp), DIMENSION (:), INTENT(IN OUT) :: list INTEGER, DIMENSION (:), INTENT(OUT) :: order ! Local variable INTEGER :: i DO i = 1, SIZE(list) order(i) = i END DO CALL quick_sort_1(1, SIZE(list)) RETURN CONTAINS RECURSIVE SUBROUTINE quick_sort_1(left_end, right_end) INTEGER, INTENT(IN) :: left_end, right_end ! Local variables INTEGER :: i, j, itemp REAL (dp) :: reference, temp INTEGER, PARAMETER :: max_simple_sort_size = 6 IF (right_end < left_end + max_simple_sort_size) THEN ! Use interchange sort for small lists CALL interchange_sort(left_end, right_end) ELSE ! Use partition ("quick") sort reference = list((left_end + right_end)/2) i = left_end - 1 j = right_end + 1 DO ! Scan list from left end until element >= reference is found DO i = i + 1 IF (list(i) >= reference) EXIT END DO ! Scan list from right end until element <= reference is found DO j = j - 1 IF (list(j) <= reference) EXIT END DO IF (i < j) THEN ! Swap two out-of-order elements temp = list(i) list(i) = list(j) list(j) = temp itemp = order(i) order(i) = order(j) order(j) = itemp ELSE IF (i == j) THEN i = i + 1 EXIT ELSE EXIT END IF END DO IF (left_end < j) CALL quick_sort_1(left_end, j) IF (i < right_end) CALL quick_sort_1(i, right_end) END IF RETURN END SUBROUTINE quick_sort_1 SUBROUTINE interchange_sort(left_end, right_end) INTEGER, INTENT(IN) :: left_end, right_end ! Local variables INTEGER :: i, j, itemp REAL (dp) :: temp DO i = left_end, right_end - 1 DO j = i+1, right_end IF (list(i) > list(j)) THEN temp = list(i) list(i) = list(j) list(j) = temp itemp = order(i) order(i) = order(j) order(j) = itemp END IF END DO END DO RETURN END SUBROUTINE interchange_sort END SUBROUTINE quick_sort