\documentclass[11pt]{article} \usepackage{fullpage,amsfonts,amsbsy, amssymb, graphicx} \input mfpic.tex \renewcommand{\baselinestretch}{1.3} \renewcommand{\mathrm}[1]{{\mbox{\tiny #1}}} \newcommand{\dfrac}[2]{\displaystyle{\frac{#1}{#2}}} \newcommand{\ds}[1]{\displaystyle#1} \newcommand{\bs}[0]{\boldsymbol} \parindent=0pt \parskip=5pt \title{\bf A generalised compartmental model - increased accuracy and precision of the traditional compartmental model without increased computational effort} \author{\Large\bf K.A. Lindsay\\ Department of Mathematics, University Gardens, University of Glasgow,\\ Glasgow G12 8QQ\\[10pt] \Large\bf A.E. Lindsay\\ Department of Mathematics, Kings Buildings, University of Edinburgh,\\ Edinburgh EH9 3JZ\\[10pt] \Large\bf J.R. Rosenberg \\ Division of Neuroscience and Biomedical Systems,\\ University of Glasgow, Glasgow G12 8QQ} \makeatletter \def\@cite#1#2{{#1\if@tempswa , #2\fi}} \def\@biblabel#1{} \makeatother \begin{document} \opengraphsfile{mfpic} \maketitle \thispagestyle{empty} \vfil \begin{center} \begin{tabular}{p{5.2in}} \multicolumn{1}{c}{\textbf{Abstract}}\\[10pt] Compartmental models of complex branching dendrites are the most widely used tool for investigating the behaviour of these structures. This report demonstrates that both the accuracy and precision of traditional compartmental models can be significantly improved by relaxing the basic assumptions of these models, namely, that compartments are iso-potential regions and that all input to a compartment occurs at a designated node. The selective relaxation of these assumptions is explored in this report and leads to the development of the \emph{generalised compartmental model} which achieves significantly more accuracy than the traditional compartmental model without any increase in computational effort beyond that already required by the traditional compartmental model. \end{tabular} \end{center} \vfil \pagebreak[4] \tableofcontents \pagebreak[4] \input gen1.tex \input gen2.tex \input gen3.tex \input gen4.tex \input gen5.tex \input gen6.tex \closegraphsfile \end{document} \section*{Percentage Mean and Standard deviation of Gen error} \begin{tabular}{r|cccccccccc} \hline&&&&&&&&&&\\[-8pt] Nodes & t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 & t=9 & t=10\\[2pt] \hline&&&&&&&&&&\\[-8pt] 21 &-2.787 & -3.449 & -2.396 & -1.800 & -1.437 & -1.200 & -1.036 & -0.917 & -0.829 & -0.760\\[2pt] 34 & 1.323 & -0.510 & -0.430 & -0.341 & -0.279 & -0.237 & -0.207 & -0.185 & -0.168 & -0.153\\[2pt] 42 & 1.021 & -0.262 & -0.251 & -0.205 & -0.170 & -0.145 & -0.127 & -0.113 & -0.103 & -0.093\\[2pt] 54 & 0.521 & -0.150 & -0.139 & -0.113 & -0.092 & -0.078 & -0.067 & -0.060 & -0.054 & -0.048\\[2pt] 67 & 0.295 & -0.165 & -0.140 & -0.112 & -0.092 & -0.078 & -0.068 & -0.060 & -0.055 & -0.050\\[2pt] 75 & 0.228 & -0.094 & -0.082 & -0.066 & -0.054 & -0.046 & -0.040 & -0.035 & -0.032 & -0.029\\[2pt] 82 & 0.217 & -0.067 & -0.063 & -0.051 & -0.042 & -0.035 & -0.031 & -0.027 & -0.025 & -0.022\\[2pt] 93 & 0.125 & -0.070 & -0.059 & -0.047 & -0.038 & -0.032 & -0.028 & -0.025 & -0.023 & -0.020\\[2pt] 119 & 0.067 & -0.045 & -0.037 & -0.030 & -0.024 & -0.020 & -0.018 & -0.016 & -0.014 & -0.013\\[2pt] 142 & 0.072 & -0.022 & -0.020 & -0.017 & -0.014 & -0.011 & -0.010 & -0.009 & -0.008 & -0.007\\[2pt] 169 & 0.054 & -0.014 & -0.013 & -0.011 & -0.009 & -0.008 & -0.007 & -0.006 & -0.005 & -0.005\\[2pt] 193 & 0.033 & -0.014 & -0.012 & -0.010 & -0.008 & -0.006 & -0.006 & -0.005 & -0.004 & -0.004\\[2pt] 244 & 0.020 & -0.009 & -0.007 & -0.006 & -0.005 & -0.004 & -0.003 & -0.003 & -0.003 & -0.002\\[2pt] 293 & 0.011 & -0.006 & -0.005 & -0.004 & -0.003 & -0.003 & -0.002 & -0.002 & -0.002 & -0.002\\[2pt] 391 & 0.010 & -0.002 & -0.002 & -0.002 & -0.001 & -0.001 & -0.001 & -0.001 & -0.001 & -0.000\\[2pt] 495 & 0.005 & -0.001 & -0.001 & -0.001 & -0.001 & -0.001 & -0.000 & -0.000 & -0.000 & -0.000\\[2pt] 992 & 0.001 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000\\[2pt] \hline \end{tabular} \begin{tabular}{r|cccccccccc} \hline&&&&&&&&&&\\[-8pt] Nodes & t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 & t=9 & t=10\\[2pt] \hline&&&&&&&&&&\\[-8pt] 21 & 37.21 & 10.48 & 6.241 & 4.536 & 3.619 & 3.048 & 2.660 & 2.380 & 2.170 & 2.007\\[2pt] 34 & 8.319 & 2.417 & 1.420 & 1.021 & 0.810 & 0.680 & 0.593 & 0.531 & 0.484 & 0.449\\[2pt] 42 & 4.983 & 1.432 & 0.831 & 0.592 & 0.466 & 0.388 & 0.336 & 0.300 & 0.272 & 0.252\\[2pt] 54 & 2.721 & 0.791 & 0.457 & 0.324 & 0.254 & 0.211 & 0.182 & 0.162 & 0.147 & 0.137\\[2pt] 67 & 2.235 & 0.667 & 0.393 & 0.283 & 0.223 & 0.187 & 0.162 & 0.145 & 0.132 & 0.122\\[2pt] 75 & 1.427 & 0.434 & 0.255 & 0.182 & 0.144 & 0.120 & 0.104 & 0.093 & 0.084 & 0.078\\[2pt] 82 & 1.123 & 0.341 & 0.201 & 0.143 & 0.113 & 0.094 & 0.081 & 0.072 & 0.065 & 0.061\\[2pt] 93 & 0.887 & 0.277 & 0.166 & 0.120 & 0.095 & 0.080 & 0.069 & 0.062 & 0.056 & 0.053\\[2pt] 119 & 0.542 & 0.168 & 0.100 & 0.072 & 0.057 & 0.047 & 0.041 & 0.037 & 0.033 & 0.031\\[2pt] 142 & 0.386 & 0.117 & 0.068 & 0.049 & 0.038 & 0.032 & 0.027 & 0.024 & 0.022 & 0.021\\[2pt] 169 & 0.253 & 0.077 & 0.045 & 0.032 & 0.025 & 0.021 & 0.018 & 0.016 & 0.015 & 0.014\\[2pt] 193 & 0.210 & 0.065 & 0.038 & 0.027 & 0.021 & 0.018 & 0.015 & 0.014 & 0.012 & 0.012\\[2pt] 244 & 0.124 & 0.038 & 0.022 & 0.016 & 0.012 & 0.010 & 0.009 & 0.008 & 0.007 & 0.007\\[2pt] 293 & 0.088 & 0.027 & 0.016 & 0.011 & 0.009 & 0.007 & 0.006 & 0.005 & 0.005 & 0.005\\[2pt] 391 & 0.051 & 0.015 & 0.008 & 0.006 & 0.005 & 0.004 & 0.003 & 0.003 & 0.002 & 0.002\\[2pt] 495 & 0.032 & 0.009 & 0.005 & 0.003 & 0.003 & 0.002 & 0.002 & 0.002 & 0.001 & 0.001\\[2pt] 992 & 0.007 & 0.002 & 0.001 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\\[2pt] \hline \end{tabular} \section*{Percentage Mean and Standard deviation of Mod error} \begin{tabular}{r|cccccccccc} \hline&&&&&&&&&&\\[-8pt] Nodes & t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 & t=9 & t=10\\[2pt] \hline&&&&&&&&&&\\[-8pt] 21 & -42.97 & -9.952 & -4.695 & -2.896 & -2.070 & -1.622 & -1.351 & -1.171 & -1.045 & -0.950\\[2pt] 34 & -15.44 & -3.114 & -1.294 & -0.732 & -0.498 & -0.381 & -0.315 & -0.272 & -0.243 & -0.220\\[2pt] 42 & -9.796 & -1.927 & -0.803 & -0.458 & -0.314 & -0.241 & -0.199 & -0.172 & -0.154 & -0.138\\[2pt] 54 & -5.498 & -1.070 & -0.443 & -0.251 & -0.170 & -0.130 & -0.107 & -0.092 & -0.082 & -0.073\\[2pt] 67 & -4.514 & -0.904 & -0.387 & -0.225 & -0.157 & -0.121 & -0.100 & -0.087 & -0.078 & -0.070\\[2pt] 75 & -2.983 & -0.589 & -0.247 & -0.141 & -0.097 & -0.074 & -0.061 & -0.053 & -0.047 & -0.042\\[2pt] 82 & -2.406 & -0.469 & -0.196 & -0.112 & -0.077 & -0.059 & -0.048 & -0.042 & -0.037 & -0.033\\[2pt] 93 & -1.944 & -0.387 & -0.164 & -0.095 & -0.066 & -0.051 & -0.042 & -0.036 & -0.032 & -0.029\\[2pt] 119 & -1.187 & -0.237 & -0.102 & -0.059 & -0.041 & -0.032 & -0.026 & -0.023 & -0.020 & -0.018\\[2pt] 142 & -0.794 & -0.154 & -0.065 & -0.037 & -0.025 & -0.019 & -0.016 & -0.014 & -0.012 & -0.010\\[2pt] 169 & -0.570 & -0.110 & -0.045 & -0.026 & -0.017 & -0.013 & -0.011 & -0.009 & -0.008 & -0.007\\[2pt] 193 & -0.443 & -0.087 & -0.036 & -0.021 & -0.014 & -0.011 & -0.009 & -0.008 & -0.007 & -0.006\\[2pt] 244 & -0.276 & -0.054 & -0.023 & -0.013 & -0.009 & -0.007 & -0.005 & -0.005 & -0.004 & -0.003\\[2pt] 293 & -0.191 & -0.038 & -0.016 & -0.009 & -0.006 & -0.005 & -0.004 & -0.003 & -0.003 & -0.002\\[2pt] 391 & -0.104 & -0.020 & -0.008 & -0.004 & -0.003 & -0.002 & -0.002 & -0.001 & -0.001 & -0.001\\[2pt] 495 & -0.065 & -0.012 & -0.005 & -0.003 & -0.002 & -0.001 & -0.001 & -0.001 & -0.001 & -0.000\\[2pt] 992 & -0.016 & -0.003 & -0.001 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000 & -0.000\\[2pt] \hline \end{tabular} \begin{tabular}{r|cccccccccc} \hline&&&&&&&&&&\\[-8pt] Nodes & t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 & t=9 & t=10\\[2pt] \hline&&&&&&&&&&\\[-8pt] 21 & 55.50 & 14.95 & 8.130 & 5.572 & 4.280 & 3.516 & 3.018 & 2.671 & 2.417 & 2.226\\[2pt] 34 & 17.36 & 3.986 & 1.947 & 1.268 & 0.955 & 0.779 & 0.669 & 0.593 & 0.538 & 0.498\\[2pt] 42 & 10.94 & 2.426 & 1.165 & 0.750 & 0.559 & 0.453 & 0.386 & 0.340 & 0.308 & 0.285\\[2pt] 54 & 6.200 & 1.353 & 0.644 & 0.412 & 0.306 & 0.246 & 0.210 & 0.185 & 0.167 & 0.155\\[2pt] 67 & 5.229 & 1.164 & 0.565 & 0.366 & 0.274 & 0.222 & 0.189 & 0.167 & 0.151 & 0.140\\[2pt] 75 & 3.479 & 0.769 & 0.369 & 0.237 & 0.176 & 0.142 & 0.121 & 0.107 & 0.096 & 0.090\\[2pt] 82 & 2.768 & 0.607 & 0.290 & 0.185 & 0.137 & 0.110 & 0.094 & 0.082 & 0.074 & 0.070\\[2pt] 93 & 2.325 & 0.515 & 0.248 & 0.160 & 0.119 & 0.096 & 0.082 & 0.072 & 0.065 & 0.061\\[2pt] 119 & 1.396 & 0.309 & 0.149 & 0.095 & 0.071 & 0.057 & 0.049 & 0.043 & 0.039 & 0.036\\[2pt] 142 & 0.940 & 0.205 & 0.098 & 0.063 & 0.047 & 0.038 & 0.032 & 0.028 & 0.025 & 0.024\\[2pt] 169 & 0.669 & 0.145 & 0.069 & 0.043 & 0.032 & 0.026 & 0.022 & 0.019 & 0.017 & 0.016\\[2pt] 193 & 0.526 & 0.116 & 0.055 & 0.036 & 0.026 & 0.021 & 0.018 & 0.016 & 0.014 & 0.014\\[2pt] 244 & 0.320 & 0.069 & 0.033 & 0.021 & 0.015 & 0.012 & 0.010 & 0.009 & 0.008 & 0.008\\[2pt] 293 & 0.223 & 0.049 & 0.023 & 0.015 & 0.011 & 0.009 & 0.007 & 0.006 & 0.006 & 0.005\\[2pt] 391 & 0.122 & 0.026 & 0.012 & 0.008 & 0.006 & 0.004 & 0.004 & 0.003 & 0.003 & 0.003\\[2pt] 495 & 0.076 & 0.016 & 0.008 & 0.005 & 0.003 & 0.003 & 0.002 & 0.002 & 0.002 & 0.002\\[2pt] 992 & 0.018 & 0.004 & 0.001 & 0.001 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\\[2pt] \hline \end{tabular} \section*{Percentage Mean and Standard deviation of Old error} \begin{tabular}{r|cccccccccc} \hline&&&&&&&&&&\\[-8pt] Nodes & t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 & t=9 & t=10\\[2pt] \hline&&&&&&&&&&\\[-8pt] 21 & -25.38 & -5.964 & -2.919 & -1.874 & -1.388 & -1.122 & -0.958 & -0.848 & -0.769 & -0.708\\[2pt] 34 & -11.46 & -2.073 & -0.815 & -0.458 & -0.321 & -0.256 & -0.220 & -0.198 & -0.183 & -0.169\\[2pt] 42 & -7.455 & -1.423 & -0.634 & -0.398 & -0.299 & -0.247 & -0.216 & -0.196 & -0.181 & -0.167\\[2pt] 54 & -3.503 & -0.406 & -0.074 & -0.000 & 0.018 & 0.022 & 0.022 & 0.020 & 0.019 & 0.019\\[2pt] 67 & -2.783 & -0.338 & -0.082 & -0.025 & -0.009 & -0.005 & -0.004 & -0.004 & -0.004 & -0.003\\[2pt] 75 & -2.241 & -0.447 & -0.211 & -0.138 & -0.106 & -0.089 & -0.078 & -0.070 & -0.065 & -0.060\\[2pt] 82 & -1.687 & -0.249 & -0.081 & -0.038 & -0.023 & -0.016 & -0.013 & -0.011 & -0.010 & -0.008\\[2pt] 93 & -1.684 & -0.392 & -0.202 & -0.137 & -0.107 & -0.090 & -0.079 & -0.071 & -0.066 & -0.061\\[2pt] 119 & -0.664 & -0.044 & 0.010 & 0.019 & 0.020 & 0.018 & 0.017 & 0.015 & 0.014 & 0.014\\[2pt] 142 & -0.509 & -0.068 & -0.021 & -0.010 & -0.006 & -0.005 & -0.004 & -0.004 & -0.004 & -0.003\\[2pt] 169 & -0.572 & -0.164 & -0.096 & -0.070 & -0.057 & -0.049 & -0.043 & -0.039 & -0.036 & -0.034\\[2pt] 193 & -0.423 & -0.106 & -0.055 & -0.036 & -0.027 & -0.022 & -0.019 & -0.017 & -0.015 & -0.013\\[2pt] 244 & -0.264 & -0.059 & -0.026 & -0.016 & -0.011 & -0.008 & -0.007 & -0.006 & -0.005 & -0.005\\[2pt] 293 & -0.175 & -0.030 & -0.009 & -0.004 & -0.002 & -0.001 & -0.000 & -0.000 & -0.000 & -0.000\\[2pt] 391 & -0.050 & -0.009 & -0.006 & -0.006 & -0.006 & -0.005 & -0.005 & -0.005 & -0.005 & -0.004\\[2pt] 495 & -0.071 & -0.022 & -0.014 & -0.010 & -0.008 & -0.007 & -0.006 & -0.005 & -0.005 & -0.004\\[2pt] 992 & 0.020 & 0.012 & 0.008 & 0.005 & 0.004 & 0.003 & 0.003 & 0.002 & 0.002 & 0.002\\[2pt] \hline \end{tabular} \begin{tabular}{r|cccccccccc} \hline&&&&&&&&&&\\[-8pt] Nodes & t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 & t=9 & t=10\\[2pt] \hline&&&&&&&&&&\\[-8pt] 21 & 54.93 & 27.29 & 18.97 & 14.58 & 11.90 & 10.13 & 8.887 & 7.984 & 7.304 & 6.774\\[2pt] 34 & 31.70 & 15.50 & 10.65 & 8.194 & 6.726 & 5.762 & 5.089 & 4.597 & 4.225 & 3.933\\[2pt] 42 & 24.44 & 12.36 & 8.509 & 6.553 & 5.386 & 4.622 & 4.089 & 3.699 & 3.404 & 3.171\\[2pt] 54 & 18.11 & 9.264 & 6.324 & 4.842 & 3.965 & 3.394 & 2.998 & 2.709 & 2.491 & 2.319\\[2pt] 67 & 16.27 & 8.326 & 5.673 & 4.339 & 3.552 & 3.040 & 2.684 & 2.426 & 2.230 & 2.076\\[2pt] 75 & 13.08 & 6.724 & 4.584 & 3.509 & 2.874 & 2.461 & 2.173 & 1.964 & 1.806 & 1.681\\[2pt] 82 & 11.73 & 6.057 & 4.137 & 3.172 & 2.601 & 2.230 & 1.971 & 1.783 & 1.640 & 1.528\\[2pt] 93 & 10.64 & 5.500 & 3.747 & 2.866 & 2.346 & 2.008 & 1.773 & 1.602 & 1.473 & 1.371\\[2pt] 119 & 8.315 & 4.318 & 2.945 & 2.256 & 1.849 & 1.584 & 1.399 & 1.265 & 1.164 & 1.084\\[2pt] 142 & 6.574 & 3.412 & 2.320 & 1.772 & 1.449 & 1.239 & 1.094 & 0.988 & 0.908 & 0.845\\[2pt] 169 & 5.535 & 2.876 & 1.961 & 1.502 & 1.232 & 1.055 & 0.933 & 0.844 & 0.776 & 0.723\\[2pt] 193 & 4.978 & 2.580 & 1.754 & 1.340 & 1.097 & 0.938 & 0.828 & 0.748 & 0.688 & 0.640\\[2pt] 244 & 3.938 & 2.052 & 1.396 & 1.067 & 0.873 & 0.747 & 0.660 & 0.596 & 0.548 & 0.510\\[2pt] 293 & 3.321 & 1.721 & 1.169 & 0.893 & 0.730 & 0.625 & 0.552 & 0.499 & 0.459 & 0.427\\[2pt] 391 & 2.395 & 1.252 & 0.854 & 0.654 & 0.535 & 0.459 & 0.405 & 0.366 & 0.337 & 0.314\\[2pt] 495 & 1.928 & 1.007 & 0.686 & 0.525 & 0.430 & 0.369 & 0.326 & 0.294 & 0.271 & 0.252\\[2pt] 992 & 0.946 & 0.497 & 0.339 & 0.260 & 0.213 & 0.182 & 0.161 & 0.146 & 0.134 & 0.125\\[2pt] \hline \end{tabular} \section{The system of model differential equations} \subsection{Designated node of an internal segment of a section} If $x_\mathrm{C}$ is the designated node of an internal segment of dendritic section then the equation contributed by this node has form \begin{equation}\label{is1} \hskip-2pt \begin{array}{l} \ds\Big(\frac{\pi g_\mathrm{A}r_\mathrm{L}r_\mathrm{C}} {x_\mathrm{C}-x_\mathrm{L}}\Big)\;V_\mathrm{L} -\Big(\frac{\pi g_\mathrm{A}r_\mathrm{L}r_\mathrm{C}} {x_\mathrm{C}-x_\mathrm{L}}+\frac{\pi g_\mathrm{A} r_\mathrm{C}r_\mathrm{R}} {x_\mathrm{R}-x_\mathrm{C}}\Big)\;V_\mathrm{C} +\Big(\frac{\pi g_\mathrm{A}r_\mathrm{C}r_\mathrm{R}} {x_\mathrm{R}-x_\mathrm{C}}\Big)\;V_\mathrm{R} = \\[12pt] \ds\quad\frac{\pi c_\mathrm{M}}{2}\,\Big[\, \big(x_\mathrm{C}-x_\mathrm{L}\big)r_\mathrm{L}\, \frac{dV_\mathrm{L}}{dt}+3\big(x_\mathrm{R}-x_\mathrm{L}\big) r_\mathrm{C}\,\frac{dV_\mathrm{C}}{dt}+ \big(x_\mathrm{R}-x_\mathrm{C}\big)r_\mathrm{R}\, \frac{dV_\mathrm{R}}{dt}\,\Big]\\[12pt] \ds\qquad+\;\frac{\pi}{2}\,\sum_\alpha\,\Big[\, \big(x_\mathrm{C}-x_\mathrm{L}\big)r_\mathrm{L} g_\alpha(V_\mathrm{L})(V_\mathrm{L}-E_\alpha)+ 3\big(x_\mathrm{R}-x_\mathrm{L}\big)\,r_\mathrm{C} g_\alpha(V_\mathrm{C})(V_\mathrm{C}-E_\alpha)\\[12pt] \qquad\quad\ds+\;\big(x_\mathrm{R}-x_\mathrm{C}\big)\, r_\mathrm{R} g_\alpha(V_\mathrm{R})(V_\mathrm{R}-E_\alpha)\,\Big] +G_\mathrm{L}(t)\,V_\mathrm{L}+G_\mathrm{C}(t)\,V_\mathrm{C} +G_\mathrm{R}(t)\,V_\mathrm{R}+I_\mathrm{C}(t)\,. \end{array} \end{equation} in which $G_\mathrm{L}(t)$, $G_\mathrm{C}(t)$ and $G_\mathrm{R}(t)$ are time dependent synaptic conductances taking the form specified in equation (\ref{si5}). The current $I_\mathrm{C}(t)$ is a function of time only and takes a value which is constructed by combining an appropriate form of expression (\ref{ei3}) for the contribution of pure exogenous current with the current arising from synaptic reversal potentials. Equation (\ref{is1}) has been constructed from equation (\ref{car6}) by replacing in an appropriate way each constituent of the membrane current. For example, the contribution due to capacitative current is given by the right hand side of expression (\ref{gcm2}) and the contribution due to intrinsic voltage-dependent current is given by the right hand side of expression (\ref{gcm4}). It is clear that the equation arising from the designated node of an internal segment of a dendritic section contains only $V_\mathrm{C}$, the potential at the designated node of the segment itself, and the potentials $V_\mathrm{L}$ and $V_\mathrm{R}$ at the designated nodes of the segments connected respectively to its somal and distil ends. The model equation will be linear if $g_\alpha$ is a constant function of $V$ across the region of dendrite occupying $[x_\mathrm{L},x_\mathrm{R}]$ for each ionic species $\alpha$, otherwise the presence of intrinsic voltage-dependent channels will lead to nonlinear behaviour. \subsection{Designated node of a terminal segment} A terminal segment of a dentritic section occurs at a dendritic tip. In this case, the designated node $x_\mathrm{C}$ is at the dendritic tip and $V_\mathrm{C}$ is the membrane potential at the tip. In these circumstances the model value assigned to $I_\mathrm{CR}$ is determined by the nature of the dendritic tip. Here it will be assumed that dendritic terminals leak no axial current (a sealed terminal) so that $I_\mathrm{CR}=0$. However, the cut terminal characterised by the condition $V_\mathrm{C}=V_\mathrm{ext}$ and the leaky terminal characterised by $I_\mathrm{CR}+\kappa ( V_\mathrm{C}- V_\mathrm{ext})=0$ are other less common possibilities where $V_\mathrm{ext}$ denotes the potential of the exterior region. If $x_\mathrm{C}$ is the designated node of a terminal segment of dendritic section then the equation contributed by this node has form \begin{equation}\label{ts1} \hskip-2pt \begin{array}{l} \ds\Big(\frac{\pi g_\mathrm{A}r_\mathrm{L}r_\mathrm{C}} {x_\mathrm{C}-x_\mathrm{L}}\Big)\;V_\mathrm{L} -\Big(\frac{\pi g_\mathrm{A}r_\mathrm{L}r_\mathrm{C}} {x_\mathrm{C}-x_\mathrm{L}}\Big)\;V_\mathrm{C} = \frac{\pi\big(x_\mathrm{C}-x_\mathrm{L}\big) c_\mathrm{M}}{2}\,\Big[\,r_\mathrm{L}\,\frac{dV_\mathrm{L}}{dt} +3r_\mathrm{C}\,\frac{dV_\mathrm{C}}{dt}\,\Big]\\[12pt] \ds\qquad+\;\frac{\pi\big(x_\mathrm{C}-x_\mathrm{L}\big)}{2}\, \sum_\alpha\,\Big[\,r_\mathrm{L}g_\alpha(V_\mathrm{L}) (V_\mathrm{L}-E_\alpha)+3r_\mathrm{C} g_\alpha(V_\mathrm{C})(V_\mathrm{C}-E_\alpha)\,\Big]\\[12pt] \qquad\quad\ds+\;G_\mathrm{L}(t)\,V_\mathrm{L}+G_\mathrm{C}(t)\, V_\mathrm{C}+I_\mathrm{C}(t) \end{array} \end{equation} in which $G_\mathrm{L}(t)$, $G_\mathrm{C}(t)$ and $I_\mathrm{C}$ are again functions of time only. Again it is clear that the equation arising from the terminal node of a dendritic section contains only $V_\mathrm{C}$, the potential at the designated node of the segment itself and $V_\mathrm{L}$, the potential at the designated node of the segment connected to its somal end. The model equation contributed by $x_\mathrm{C}$ will be linear in this case if $g_\alpha$ is a constant function of $V$ across the region of dendrite occupying $[x_\mathrm{L},x_\mathrm{C}]$ for each ionic species $\alpha$, otherwise the presence of intrinsic voltage-dependent channels will lead to nonlinear behaviour. \subsection{Designated node at soma} Suppose that $x_\mathrm{C}$ is the designated node of the soma (assumed to be lumped) to which are connected a number of dendritic segments and let $I_\mathrm{Soma}$ be the axial current supplied by the soma to these segments then conservation of current requires that \begin{equation}\label{ns1} \begin{array}{rcl} I_\mathrm{Soma} \hskip-5pt & = & \hskip-5pt \ds \sum_\mathcal{S}\,\Big[\, \Big(\frac{\pi g_\mathrm{A}r_\mathrm{C}r_\mathrm{R}} {x_\mathrm{R}-x_\mathrm{C}}\Big)\;V_\mathrm{C} -\Big(\frac{\pi g_\mathrm{A}r_\mathrm{C}r_\mathrm{R}} {x_\mathrm{R}-x_\mathrm{C}}\Big)\;V_\mathrm{R}+ \frac{\pi\big(x_\mathrm{R}-x_\mathrm{C}\big) c_\mathrm{M}}{2}\,\Big[\,3r_\mathrm{C}\,\frac{dV_\mathrm{C}}{dt}+ r_\mathrm{R}\,\frac{dV_\mathrm{R}}{dt}\,\Big]\\[12pt] &&\ds\quad+\;\frac{\pi\big(x_\mathrm{R}-x_\mathrm{C}\big)}{2}\,\sum_\alpha\,\Big[\, 3r_\mathrm{C}g_\alpha(V_\mathrm{C})(V_\mathrm{C}-E_\alpha)+ r_\mathrm{R} g_\alpha(V_\mathrm{R})(V_\mathrm{R}-E_\alpha)\, \Big]\\[12pt] &&\qquad\ds+\;G_\mathrm{C}(t)\,V_\mathrm{C}+G_\mathrm{R}(t) +I_\mathrm{C}(t)\,\Big] \end{array} \end{equation} where $\mathcal{S}$ indicates that the summation is taken over all dendritic segments connected to the soma. In the summation $V_\mathrm{C}$ is the potential of the soma and $V_\mathrm{R}$ is the potential at the node $x_\mathrm{R}$ of a somal segment that has the somal node as neighbour. As previously, the equation arising from the designated node at the soma contains only $V_\mathrm{C}$, the potential of the soma, and $V_\mathrm{R}$, the potential at the designated node of each somal segment nearest to $x_\mathrm{C}$. One common constitutive formula for $I_\mathrm{Soma}$ is \begin{equation}\label{ns2} I_\mathrm{Soma}=-r_\mathrm{S}\Big[c_\mathrm{S}\frac{dV_\mathrm{C}} {dt}+\sum_\sigma\,g_\sigma(V_\mathrm{C})(V_\mathrm{C}-E_\sigma) \Big]-I_\mathrm{S} \end{equation} where $r_\mathrm{S}$ is the membrane area of the soma, $c_\mathrm{S}$ is the specific capacitance of the somal membrane, $g_\sigma(V)$ is the membrane conductance of intrinsic voltage-dependent channels on the soma of ionic species $\sigma$, and $I_\mathrm{S}(t)$ is exogenous current. The model equation contributed by $x_\mathrm{C}$ will be linear in this case if $g_\alpha$ is a constant function of $V$ across the region of dendrite occupying $[x_\mathrm{L},x_\mathrm{C}]$ for each ionic species $\alpha$, otherwise the presence of intrinsic voltage-dependent channels will lead to nonlinear behaviour. \subsection{Designated node at a branch point} The mathematical description of a dendritic branch point resembles closely that of the soma except that the contribution of the soma due to capacitance and membrane current is replaced by the contribution from a parent dendrite. Suppose that node $x_\mathrm{C}$ is a branch point connected to $m$ child sections. The expression for the axial current leaving the end of the parent section is \begin{equation}\label{ld43} \begin{array}{l} \dfrac{V_\mathrm{L}}{r_\mathrm{L}} -\dfrac{V_\mathrm{C}}{r_\mathrm{L}} -c_\mathrm{M}\Big[\alpha_\mathrm{C}\;\dfrac{dV_\mathrm{L}}{dt} +\xi_\mathrm{C}\;\dfrac{dV_\mathrm{C }}{dt}\Big]- \ds{\sum_{\sigma,\;x_\mathrm{syn}}}\;g_\mathrm{syn}(t)\, (V_\mathrm{syn}-E_\sigma)-I_\mathrm{injected}\\[12pt] \qquad-\:\ds{\sum_\sigma}\;g_\sigma(V_\mathrm{C},t)\, \Big[\alpha_\mathrm{C}\;(V_\mathrm{L}-E_\sigma) +\xi_\mathrm{C}\;(V_\mathrm{C}-E_\sigma)\Big] \end{array} \end{equation} where $\alpha_\mathrm{C}$, $\xi_\mathrm{C}$ and $r_\mathrm{L}$ are defined by expressions (\ref{ld6}) and (\ref{ld2}) respectively. Note that this expression is identical to that for $I_\mathrm{R}$ at a dendritic tip. In conclusion, the differential equation contributed by the branch point is therefore \begin{equation}\label{ld44} \begin{array}{l} c_\mathrm{M}\Big[\alpha_\mathrm{C}\;\dfrac{dV_\mathrm{L}}{dt} +\xi_\mathrm{C}\;\dfrac{dV_\mathrm{C }}{dt}\Big]+ \ds{\sum_{\sigma,\;x_\mathrm{syn}}}\;g_\mathrm{syn}(t)\, (V_\mathrm{syn}-E_\sigma)+I_\mathrm{injected}\\[12pt] \qquad+\:\ds{\sum_\sigma}\;g_\sigma(V_\mathrm{C},t)\, \Big[\alpha_\mathrm{C}\;(V_\mathrm{L}-E_\sigma) +\xi_\mathrm{C}\;(V_\mathrm{C}-E_\sigma)\Big]+\dfrac{V_\mathrm{C}-V_\mathrm{L}} {r_\mathrm{L}}+\sum_{k=1}^m\; I^{(k)}_\mathrm{L}=0\,. \end{array} \end{equation} \section{The system of model differential equations} Both the traditional and generalised compartmental models involve the solution of a system of ordinary differential equations with one equation arising from the description of the potential at each designated node. Let \begin{equation}\label{de1} V(t)=\big[\,V_0(t),V_1(t),\cdots,V_n(t)\,]^\mathrm{T} \end{equation} be the column vector of dimension $(n+1)$ with $k$-th entry the potential of the $k$-th designated node at time $t$. Each model equation is based on conservation of axial current at the designate node taking account of the connectivity of the node. The construction of the model differential equations requires the separate consideration of segments internal to a dendritic section, terminal segments of a dendritic section, segments connected at a branch point and segments attached to the soma.