\subsection{Point current input} It is through the mathematical description of point sources of current that the generalised compartmental model is superior to the traditional compartmental model. Consider first the description of exogenous input. The essential difference between exogenous current input and synaptic current input is that the contribution of the former is independent of the membrane potential whereas the contribution of the latter is governed by the membrane potential at the synapse. In overview, the mechanism used to describe both is identical. Let $x_1<x_2<\cdots x_{n-1}$ be the ordered locations of current input $I_1,\ I_2,\ \cdots\ I_{n-1}$ on the dendritic membrane lying between the designated nodes $x_0=x_\mathrm{L}$ and $x_n=x_\mathrm{C}$. The axial current $I_\mathrm{LC}$ flowing from $x_\mathrm{L}$ to $x_\mathrm{C}$ must now be modified by the presence of each current source. In the absence of point sources of current to the dendritic membrane occupying $[x_\mathrm{L},x_\mathrm{C}]$, $I\mathrm{LC}$ is the axial current flowing from $x_\mathrm{L}$ towards $x_\mathrm{C}$. On the other hand, if one allows point sources of current on the dendritic membrane occupying $[x_\mathrm{L},x_\mathrm{C}]$, Figure \ref{realcurrent} indicates that current $J_0$ and \textbf{not} $I_\mathrm{LC}$ flows from $x_\mathrm{L}$ towards $x_\mathrm{C}$ and therefore $I_\mathrm{LC}$ must be corrected by the inclusion of point current $(J_0-I_\mathrm{LC})$ at $x_\mathrm{L}$. A similar argument applies to current reaching $x_\mathrm{C}$ from $x_\mathrm{L}$. The current flowing into $x_\mathrm{C}$ is $J_{n-1}$ and \textbf{not} $I_\mathrm{LC}$ and therefore the correction $(I_\mathrm{LC}-J_{n-1})$ must be included as a point current at $x_\mathrm{C}$. \begin{figure}[!h] \centerline{\qquad\begin{mfpic}[0.9][1]{-50}{400}{-30}{50} \pen{1pt} \headlen7pt % % Sealed cable \arrow\lines{(0,20),(25,20)} \arrow\lines{(40,20),(65,20)} \arrow\lines{(120,20),(145,20)} \arrow\lines{(160,20),(185,20)} \arrow\lines{(240,20),(265,20)} \arrow\lines{(280,20),(305,20)} % % \dotspace=4pt \dotsize=2pt \dotted\lines{(75,20),(110,20)} \dotted\lines{(195,20),(230,20)} % % Nodes on sealed cable \tlabel[cc](0,20){\large $\bullet$} \tlabel[cc](40,20){\large $\bullet$} \tlabel[cc](120,20){\large $\bullet$} \tlabel[cc](160,20){\large $\bullet$} \tlabel[cc](240,20){\large $\bullet$} \tlabel[cc](280,20){\large $\bullet$} \tlabel[cc](320,20){\large $\bullet$} % % Points on sealed cable \tlabel[br](0,30){$x_\mathrm{L}=x_0$} \tlabel[bc](40,30){$x_1$} \tlabel[bc](120,30){$x_{k-1}$} \tlabel[bc](160,30){$x_k$} \tlabel[bc](240,30){$x_{n-2}$} \tlabel[bc](280,30){$x_{n-1}$} \tlabel[bl](320,30){$x_n=x_\mathrm{C}$} % \tlabel[cc](20,10){$J_0$} \tlabel[cc](60,10){$J_1$} \tlabel[cc](140,10){$J_{k-1}$} \tlabel[cc](180,10){$J_k$} \tlabel[cc](260,10){$J_{n-2}$} \tlabel[cc](300,10){$J_{n-1}$} % % Sealed cable \arrow\lines{(40,10),(40,-10)} \tlabel[tc](40,-15){\textsf{$I_1$}} \arrow\lines{(120,10),(120,-10)} \tlabel[tc](120,-15){\textsf{$I_{k-1}$}} \arrow\lines{(160,10),(160,-10)} \tlabel[tc](160,-15){\textsf{$I_k$}} \arrow\lines{(240,10),(240,-10)} \tlabel[tc](240,-15){\textsf{$I_{n-2}$}} \arrow\lines{(280,10),(280,-10)} \tlabel[tc](280,-15){\textsf{$I_{n-1}$}} \end{mfpic}} \centering \parbox{4in}{\caption{\label{realcurrent} Configuration of point current input to the length of dendritic membrane between $x_\mathrm{L}$ and $x_\mathrm{C}$.}} \end{figure} If current $J_k$ flows from $x_k$ to $x_{k+1}$, then the aim of this analysis is to determine the corrections $(J_0-I_\mathrm{LC})$ and $(I_\mathrm{LC}-J_{n-1})$ that must be applied to $I_\mathrm{LC}$ at $x_\mathrm{L}$ and $x_\mathrm{C}$ respectively as a consequence of the point current input to the dendritic membrane occupying $[x_\mathrm{L},x_\mathrm{C}]$. Kirchhoff's laws applied to the section of dendrite illustrated in Figure \ref{realcurrent} give \begin{equation}\label{pc2} J_0=J_1+I_1\,,\quad\cdots\quad J_{k-1}=J_k+I_k\,,\quad\cdots\quad J_{n-2}=J_{n-1}+I_{n-1} \end{equation} where \begin{equation}\label{pc3} J_k = \frac{\pi g_\mathrm{A}r_k r_{k+1}(V_k-V_{k+1})}{x_{k+1}-x_k} \,,\qquad k=0,1,\cdots,(n-1)\,. \end{equation} Bearing in mind that $V_0=V_\mathrm{L}$ and that $V_n=V_\mathrm{C}$, it follows directly from $J_{k-1}=J_k+I_k$ that the potentials $V_1,\cdots, V_{n-1}$ satisfy the equations \begin{equation}\label{pc4} \frac{\pi g_\mathrm{A}r_{k-1} r_k(V_{k-1}-V_k)}{x_k-x_{k-1}} -\frac{\pi g_\mathrm{A}r_k r_{k+1}(V_k-V_{k+1})} {x_{k+1}-x_k}=I_k\,,\qquad k=1,\cdots,n-1\,, \end{equation} which on division by $\pi g_\mathrm{A} r_k$ yields \begin{equation}\label{pc4} \frac{r_{k-1} V_{k-1}}{x_k-x_{k-1}} -\Big(\frac{r_{k-1} V_k}{x_k-x_{k-1}}+ \frac{r_{k+1}V_k}{x_{k+1}-x_k}\Big) +\frac{r_{k+1}V_{k+1}}{x_{k+1}-x_k} =\frac{I_k}{\pi g_\mathrm{A} r_k}\,,\qquad k=1,\cdots,n-1\,. \end{equation} It is a matter of straight forward algebra to verify that \[ \frac{r_{k-1} V_k}{x_k-x_{k-1}}+\frac{r_{k+1}V_k}{x_{k+1}-x_k} =\frac{r_k V_k (x_{k+1}-x_{k-1})}{(x_k-x_{k-1})(x_{k+1}-x_k)}\,, \] and when the right hand side of this equation is used to simplify the middle term in equation (\ref{pc4}), the result may be expressed in the form \begin{equation}\label{pc5} \frac{\big(\,r_{k-1} V_{k-1}-r_k V_k\,\big)}{x_k-x_{k-1}} -\frac{\big(\,r_k V_k- r_{k+1}V_{k+1}\,\big)}{x_{k+1}-x_k} =\frac{I_k}{\pi g_\mathrm{A} r_k}\,,\qquad k=1,\cdots,n-1\,. \end{equation} Most importantly, the validity of equation (\ref{pc5}) is independent of the specific nature of $I_k$, that is, it is valid for both exogenous current for which $I_k$ is independent of $V_k$ and synaptic current for which $I_k=g_k(t)(V_k-E_k)$ where $E_k$ is the reversal potential of the ionic species of the synapse. In all cases, the task is to compute the corrections $(J_0-I_\mathrm{LC})$ and $(I_\mathrm{LC}-J_{n-1})$, and to express these corrections in terms of the potentials $V_\mathrm{L}$ and $V_\mathrm{C}$. \subsection{Exogenous input} The application of identity (\ref{pc5}) to exogenous current is examined first. The aim of this section is to use identity (\ref{pc5}) to establish the corrections \begin{equation}\label{ei1} J_0-I_\mathrm{LC}=\sum_{k=1}^{n-1}\,\frac{r_\mathrm{L}}{r_k}\, \frac{x_\mathrm{C}-x_k}{x_\mathrm{C}-x_\mathrm{L}}\;I_k\,,\qquad I_\mathrm{LC}-J_{n-1}=\sum_{k=1}^{n-1}\,\frac{r_\mathrm{C}}{r_k}\, \frac{x_k-x_\mathrm{L}}{x_\mathrm{C}-x_\mathrm{L}}\;I_k \end{equation} to be applied at $x_\mathrm{L}$ and $x_\mathrm{C}$ respectively. These expressions make explicit how input $I_k$ is partitioned between nodes $x_\mathrm{L}$ and $x_\mathrm{C}$ taking account of its location within the segment and the geometry of the segment. To facilitate the derivation of these results, it is convenient to define \begin{equation}\label{ei2} \psi_k=\frac{r_k V_k- r_{k+1}V_{k+1}}{x_{k+1}-x_k}\,. \end{equation} By replacing $I_k/r_k$ from identity (\ref{pc5}), it follows that \[ \begin{array}{rcl} \ds\sum_{k=1}^{n-1}\,\frac{r_0}{r_k}\, \frac{x_n-x_k}{x_n-x_0}\;I_k & = & \ds\frac{\pi g_\mathrm{A} r_0} {x_n-x_0}\,\sum_{k=1}^{n-1}\,\big(\,x_n-x_k\,\big) \big(\,\psi_{k-1}-\psi_k\,\big)\\[10pt] & = & \ds\frac{\pi g_\mathrm{A} r_0}{x_n-x_0}\,\Big[\, \sum_{k=0}^{n-2}\,\big(\,x_n-x_{k+1}\,\big)\,\psi_k -\sum_{k=1}^{n-1}\,\big(\,x_n-x_k\,\big)\psi_k\,\Big]\\[10pt] & = & \ds\frac{\pi g_\mathrm{A} r_0}{x_n-x_0}\,\Big[\, \big(\,x_n-x_1\,\big)\,\psi_0-\sum_{k=1}^{n-2}\, \big(\,x_{k+1}-x_k\,\big)\psi_k-\big(\,x_n-x_{n-1}\,\big)\, \psi_{n-1}\,\Big]\\[10pt] & = & \ds\frac{\pi g_\mathrm{A} r_0}{x_n-x_0}\,\Big[\, \big(\,x_n-x_1\,\big)\,\psi_0-\sum_{k=1}^{n-1}\, \big(\,r_k V_k-r_{k+1}V_{k+1}\,\big)\,\Big]\\[10pt] & = & \ds\frac{\pi g_\mathrm{A} r_0}{x_n-x_0}\,\Big[\, \frac{(x_n-x_1)}{(x_1-x_0)}\,\big(\,r_0 V_0-r_1 V_1\,\big) -\big(r_1 V_1-r_n V_n\big)\,\Big]\\[10pt] & = & \ds\frac{\pi g_\mathrm{A} r_0}{x_n-x_0}\,\Big[\, \frac{(x_n-x_0)}{(x_1-x_0)}\,\big(\,r_0 V_0-r_1 V_1\,\big) +r_n V_n-r_0 V_0\,\Big]\\[10pt] & = & \ds\frac{\pi g_\mathrm{A} r_0 r_n (V_n-V_0)}{x_n-x_0} +\frac{\pi g_\mathrm{A} r_0 r_1\big(\,V_0-V_1\,\big)} {x_1-x_0}\\[10pt] & = & J_0-I_\mathrm{LC}\,. \end{array} \] The second identity is obtained directly from the first by a piece of straight forward algebra based on the observation that $J_0=J_{n-1}+I_1+I_2+\cdots+I_{n-1}$. For example, in the special case of a single point input $I_1$ at point $x_1$ between the designated nodes $x_\mathrm{L}$ and $x_\mathrm{C}$, if follows directly from (\ref{ei1}) that \begin{equation}\label{ei9} J_0-I_\mathrm{LC}=\frac{r_\mathrm{L}}{r_1}\, \frac{x_\mathrm{C}-x_1}{x_\mathrm{C}-x_\mathrm{L}}\;I_1\,,\qquad I_\mathrm{LC}-J_1=\frac{r_\mathrm{C}}{r_1}\, \frac{x_1-x_\mathrm{L}}{x_\mathrm{C}-x_\mathrm{L}}\;I_1\,. \end{equation} If, in addition, the segment is uniform then $I_1$ is partitioned between the left hand and right hand endpoints of the segment in the proportion in which the position of the input divides the distance between the designated nodes. \subsection{Synaptic input} To appreciate how synaptic input differs from exogenous input, consider first the case of a single synapse of strength $g(t)$ at $x_\mathrm{S}\in\mathcal{L}$. In this simple case, the currents $J_0$ and $J_1$ are respectively \begin{equation}\label{si1} J_0 = \frac{\pi g_\mathrm{A}r_\mathrm{L} r_\mathrm{S} (V_\mathrm{L}-V_\mathrm{S})}{x_\mathrm{S}-x_\mathrm{L}}\,, \qquad J_1 = \frac{\pi g_\mathrm{A}r_\mathrm{S} r_\mathrm{C} (V_\mathrm{S}-V_\mathrm{C})}{x_\mathrm{C}-x_\mathrm{S}}\,, \qquad J_0=J_1+g(t)(V_\mathrm{S}-E_\mathrm{S}) \end{equation} where $V_\mathrm{S}$ is the membrane potential at the synapse, $E_\mathrm{S}$ is the reversal potential for the ionic species of the synapse and $r_\mathrm{S}$ is the radius of the dendrite at the position of the synapse. It is easy to show from equations (\ref{si1}) that the required modification to the original core current at $x_\mathrm{L}$ and at $x_\mathrm{C}$ are respectively \begin{equation}\label{si2} \hskip-8pt\begin{array}{rcl} J_0-I_\mathrm{LC}& = & \ds \frac{\pi g(t) g_\mathrm{A}r_\mathrm{L}} {x_\mathrm{C}-x_\mathrm{L}}\,\Big[ \frac{r_\mathrm{L}(x_\mathrm{C}-x_\mathrm{S})^2 (V_\mathrm{L}-E_\mathrm{S})+r_\mathrm{C}(x_\mathrm{S}-x_\mathrm{L}) (x_\mathrm{C}-x_\mathrm{S})(V_\mathrm{C}-E_\mathrm{S})} {g(t)(x_\mathrm{C}-x_\mathrm{S})(x_\mathrm{S}-x_\mathrm{L})+ \pi g_\mathrm{A} r^2_\mathrm{S}(x_\mathrm{C}-x_\mathrm{L})}\,\Big]\,,\\[10pt] I_\mathrm{LC}-J_1 & = & \ds\frac{\pi g(t) g_\mathrm{A}r_\mathrm{C}} {x_\mathrm{C}-x_\mathrm{L}}\,\Big[ \frac{r_\mathrm{L}(x_\mathrm{S}-x_\mathrm{L}) (x_\mathrm{C}-x_\mathrm{S})(V_\mathrm{L}-E_\mathrm{S}) +r_\mathrm{C}(x_\mathrm{S}-x_\mathrm{L})^2 (V_\mathrm{C}-E_\mathrm{S})}{g(t)(x_\mathrm{C}-x_\mathrm{S}) (x_\mathrm{S}-x_\mathrm{L})+\pi g_\mathrm{A} r^2_\mathrm{S} (x_\mathrm{C}-x_\mathrm{L})}\,\Big]\,. \end{array} \end{equation} In particular, it is clear that the modification to the core current $I_\mathrm{LC}$ can be characterised exactly by the addition of currents at $x_\mathrm{L}$ and $x_\mathrm{C}$. Although this methodology can be continued for many different synapses in the interval $(x_\mathrm{L},x_\mathrm{C})$, it is clear that this approach, when used to describe the effect of many synapses, will lead to an unacceptable level of complexity in the representation of their effect. What is required are approximate but yet tractable expressions for the modifications $J_0-I_\mathrm{LC}$ and $I_\mathrm{LC}-J_{n-1}$ in the axial current at $x_\mathrm{L}$ and $x_\mathrm{C}$. Moreover, these expressions should recognise that synaptic activity changes the local potential distribution. Towards this end, let the synapse at node $x_k\in\mathcal{L}$ have conductance $g_k(t)$ and reversal potential $E_k$, then the current supplied by that synapse is $I_k=g_k(t)(V_k-E_k)$ where $V_k$ is the membrane potential at location $x_k$ and time $t$. To avoid the complexity alluded to, but yet take advantage of formulae (\ref{ei1}), the membrane potential \[ V(x,t)=\frac{V_\mathrm{L}\,r_\mathrm{L}\,(x_\mathrm{C}-x)+ V_\mathrm{C}\,r_\mathrm{C}(x-x_\mathrm{L})}{r_k\, (x_\mathrm{C}-x_\mathrm{L})} \] is used in the first instance to estimate the synaptic current using the formula \begin{equation}\label{si3} \begin{array}{rcl} I_k=g_k(t)\big(V_k-E_k\big) & = & \ds g_k(t)\Big( \frac{V_\mathrm{L}\,r_\mathrm{L}\,(x_\mathrm{C}-x_k)+ V_\mathrm{C}\,r_\mathrm{C}(x_k-x_\mathrm{L})}{r_k\, (x_\mathrm{C}-x_\mathrm{L})}-E_k\Big)\\[10pt] & = & \ds g_k(t)\,\frac{r_\mathrm{L}}{r_k}\,\frac{x_\mathrm{C}-x_k} {x_\mathrm{C}-x_\mathrm{L}}\,\big(V_\mathrm{L}-E_k\big) +g_k(t)\,\frac{r_\mathrm{C}}{r_k}\,\frac{x_k-x_\mathrm{L}} {x_\mathrm{C}-x_\mathrm{L}}\,\big(V_\mathrm{C}-E_k\big)\,. \end{array} \end{equation} This expression for $I_k$ can now be used in formulae (\ref{ei1}) to conclude that the effect of synaptic input at $x_1,\cdots, x_{n-1}$ may be described by the addition of current \begin{equation}\label{si4} \begin{array}{rcl} J_0-I_\mathrm{LC} & = & \ds V_\mathrm{L}\,\sum_{k=1}^{n-1}\,g_k(t)\, \Big(\,\frac{r_\mathrm{L}}{r_k}\,\frac{x_\mathrm{C}-x_k} {x_\mathrm{C}-x_\mathrm{L}}\,\Big)^2\\[10pt] &&\qquad\ds+\; V_\mathrm{C}\,\sum_{k=1}^{n-1}\,g_k(t)\, \frac{r_\mathrm{L} r_\mathrm{C}}{r^2_k}\, \frac{(x_\mathrm{C}-x_k)(x_k-x_\mathrm{L})} {(x_\mathrm{C}-x_\mathrm{L})^2}-\sum_{k=1}^{n-1}\, \frac{r_\mathrm{L}}{r_k}\, \frac{x_\mathrm{C}-x_k}{x_\mathrm{C}-x_\mathrm{L}}\;g_k(t) E_k\,, \end{array} \end{equation} at designated point $x_\mathrm{L}$ and by the addition of current \begin{equation}\label{si5} \begin{array}{rcl} I_\mathrm{LC}-J_{n-1} & = & \ds V_\mathrm{L}\, \sum_{k=1}^{n-1}\,g_k(t)\,\frac{r_\mathrm{L}r_\mathrm{C}}{r^2_k}\, \frac{(x_k-x_\mathrm{L})(x_\mathrm{C}-x_k)} {(x_\mathrm{C}-x_\mathrm{L})^2}\\[10pt] &&\qquad\ds+\;V_\mathrm{C}\,\sum_{k=1}^{n-1}\,g_k(t)\, \Big(\frac{r_\mathrm{C}}{r_k}\,\frac{x_k-x_\mathrm{L}} {x_\mathrm{C}-x_\mathrm{L}}\Big)^2-\sum_{k=1}^{n-1}\, \frac{r_\mathrm{C}}{r_k}\, \frac{x_k-x_\mathrm{L}}{x_\mathrm{C}-x_\mathrm{L}}\;g_k(t) E_k \end{array} \end{equation} at designated point $x_\mathrm{C}$. \subsection{The model differential equations} Suppose that the neuron is partitioned into $m$ compartments where the membrane potential at the designated node of the $k^{th}$ compartment is $V_k(t)$ and let \begin{equation}\label{gmde1} V(t)=\big[\,V_1(t),V_1(t),\cdots,V_m(t)\,]^\mathrm{T}\,. \end{equation} The fundamental difference between the generalised and traditional compartmental models lies in the specification of the transmembrane current. In the traditional model, the specification of the transmembrane current falling on a compartment depends only on the membrane potential at the designated node of the compartment itself. By contrast, in the generalised model the mathematical specification of the transmembrane current falling on a compartment depends not only on the membrane potential at the designated node of the compartment, but also on the membrane potential at the designated nodes of the neighbouring compartments. For example, the capacitative current in the generalised model is expressed as a linear combination of the derivative of the membrane potential at the designated node of the compartment and the derivative of the membrane potential at the nodes of the neighbouring compartments. Similarly, the intrinsic voltage-dependent currents and synaptic currents are expressed as linear combinations of functions of the membrane potential at the designated node of the compartment and those of the neighbouring compartments. It follows immediately from these observations that $V(t)$, the column vector of membrane potentials, satisfies the ordinary differential equations \begin{equation}\label{gmde2} F^\mathrm{C}\,\frac{dV}{dt}+G^\mathrm{IVDC}(V)\,V+G^\mathrm{SYN}(t)\,V +I(t)=AV \end{equation} where the constant matrix $F^\mathrm{C}$ replaces the diagonal matrix $D^\mathrm{C}$ in expression (\ref{mde3}), the matrix $G^\mathrm{IVDC}(V)$ of intrinsic voltage-dependent conductances replaces the diagonal matrix $D^\mathrm{IVDC}(V)$ in (\ref{mde3}), the matrix $G^\mathrm{SYN}(t)$ of synaptic conductances replaces the diagonal matrix $D^\mathrm{SYN}(t)$ in (\ref{mde3}) and $I(t)$ is a column vector of exogenous currents. On the other hand, the conductance matrix $A$ is identical to that of the traditional compartmental model. Equation (\ref{gmde2}) is now integrated over the interval $[t,t+h]$ to get \begin{equation}\label{gmde3} F^\mathrm{C}\,\big[\,V(t+h)-V(t)\,\big]+ \int_t^{t+h}\,\big[\,G^\mathrm{IVDC}(V)+ G^\mathrm{SYN}(t)\,\big]\,V(t)\,dt +\int_t^{t+h}\,I(t)=A\int_t^{t+h}\,V(t)\,dt\,. \end{equation} The trapezoidal quadrature is used to replace each integral in equation (\ref{gmde3}) with the exception of the integral of intrinsic voltage-dependent current, which is replaced by the midpoint quadrature. The result of this calculation is \begin{equation}\label{gmde4} \begin{array}{l} \ds F^\mathrm{C}\,\big[\,V(t+h)-V(t)\,\big]+ h\,G^\mathrm{IVDC}(V(t+h/2))\,V(t+h/2)\\[10pt] \quad\ds+\;\frac{h}{2}\,\Big[\,G^\mathrm{SYN}(t+h)V(t+h) +G^\mathrm{SYN}(t)V(t)\,\Big]+\frac{h}{2} \Big[\,I(t+h)+I(t)\,\Big]\\[10pt] \qquad\ds = \frac{h}{2}\,\Big[\,A V(t+h)+AV(t)\,\Big]+O(h^3)\,. \end{array} \end{equation} On taking account of the fact that \[ V(t+h/2)=\frac{1}{2} \,\Big[\,V(t+h)+V(t)\,\Big]+O(h^2)\,, \] equation (\ref{mde5}) may be reorganised to give \begin{equation}\label{mde6} \begin{array}{l} \ds \Big[\,2 F^\mathrm{C}-hA+h\,G^\mathrm{SYN}(t+h) +h\,G^\mathrm{IVDC}(V(t+h/2))\,\Big]\,V(t+h) = \\[10pt] \qquad\ds \Big[\,2 F^\mathrm{C}+hA+h G^\mathrm{SYN}(t) -h\,G^\mathrm{IVDC}(V(t+h/2))\,\Big]\,V(t) -h\Big[\,I(t+h)+I(t)\,\Big] \end{array} \end{equation} when the error structure is ignored. The detailed computation of $G^\mathrm{IVDC}(V(t+h/2))$ is determined entirely by the structure of the auxiliary equations. In the case of Hodgkin-Huxley like channels, it is standard knowledge that $G^\mathrm{IVDC}(V(t+h/2))$ can be computed to adequate accuracy from $V(t)$ and the differential satisfied by the auxiliary variables (Lindsay \emph{et al.}, \cite{Lindsay01a}). The inference to be drawn from the fact that matrix $2 F^\mathrm{C}-hA+h\,G^\mathrm{SYN}(t+h) +h\,G^\mathrm{IVDC}(V(t+h/2))$ is not more complex than $A$ itself is that the numerical complexity of the mathematical problem posed by the generalised compartmental model is identical to that posed by the traditional compartmental model.