\section{The model neuron} Central to the comparison of the accuracy of the traditional and generalised compartmental models is the construction of a typical branched neuron for which the mathematical model has a closed form expression for the membrane potential in response to input. This solution then stands as a reference against which the performance of the traditional and generalised compartmental models may be measured. The most effective way to construct a branched model neuron with a closed form solution for the membrane potential is to choose the radii and lengths of its sections such that the Rall conditions for an equivalent cylinder are satisfied (Rall, \cite{Rall64}). The Rall conditions require that at any branch point the sum of the three-halves power of the diameters of the child limbs is equal to the three-halves power of the parent limb, and that the total electrotonic length from a branch point to dendritic tip is independent of path. In particular, the electrotonic distance from soma-to-tip is independent of path. The model neuron illustrated in Figure \ref{TestNeuron} satisfies these conditions. When the Rall conditions are satisfied, the effect at the soma of any configuration of input on the branched model of the neuron is identical to the effect at the soma of the unbranched equivalent cylinder with biophysical properties and configuration of input determined uniquely from those of the original branched neuron (Lindsay \emph{et al.}, \cite{Lindsay03}). \begin{figure}[!h] \[ \begin{array}{c} $\begin{mfpic}[1][1]{0}{220}{-20}{220} \pen{2pt} \dotsize=1pt \dotspace=3pt \lines{(-5,100),(5,110),(15,100),(5,90),(-5 ,100)} % Upper dendrite % Root branch \dotted\lines{(5,115),(15,170),(20,170)} \lines{(20.0,160),(36.7,160)} \tlabel[tc](28.4,150){\textsf{(a)}} % Level 1 \lines{(50.0,190),(88.3,190)} \tlabel[bc](75,200){\textsf{(c)}} \lines{(50.0,130),(91.0,130)} \tlabel[tc](75,120){\textsf{(d)}} \dotted\lines{(36.7,160),(45,200),(55,200)} \dotted\lines{(36.7,160),(45,120),(55,120)} % Level 2 \lines{(100.0,210),(153.2,210)} \lines{(100.0,190),(153.2,190)} \lines{(100.0,170),(153.2,170)} \tlabel[cl](160,210){\textsf{(g)}} \tlabel[cl](160,190){\textsf{(g)}} \tlabel[cl](160,170){\textsf{(g)}} \dotted\lines{(88.3,190),(95,220),(105,220)} \dotted\lines{(88.3,190),(95,160),(105,160)} \lines{(100.0,140),(165.1,140)} \lines{(100.0,120),(165.1,120)} \dotted\lines{(91.0,130),(95,150),(105,150)} \dotted\lines{(91.0,130),(95,110),(105,110)} \tlabel[cl](175,140){\textsf{(h)}} \tlabel[cl](175,120){\textsf{(h)}} % % Lower dendrite % Root branch \lines{(20.0,40),(58.0,40)} \dotted\lines{(5,85),(15,30),(25,30)} \tlabel[bc](39,50){\textsf{(b)}} % Level 1 \lines{(70.0,70),(133.1,70)} \lines{(70.0,10),(127.1,10)} \dotted\lines{(58,40),(66.5,80),(76.5,80)} \dotted\lines{(58,40),(66.5,0),(76.5,0)} \tlabel[bc](105,80){\textsf{(e)}} \tlabel[tc](105,0){\textsf{(f)}} % Level 2 \lines{(145,80),(195.1,80)} \lines{(145,60),(195.1,60)} \dotted\lines{(133.1,70),(140,90),(150,90)} \dotted\lines{(133.1,70),(140,50),(150,50)} \tlabel[cl](205,80){\textsf{(i)}} \tlabel[cl](205,60){\textsf{(i)}} \lines{(140,30),(179.6,30)} \lines{(140,10),(179.6,10)} \lines{(140,-10),(179.6,-10)} \dotted\lines{(127.1,10),(134,40),(144,40)} \dotted\lines{(127.1,10),(134,-20),(144,-20)} \tlabel[cl](190,30){\textsf{(j)}} \tlabel[cl](190,10){\textsf{(j)}} \tlabel[cl](190,-10){\textsf{(j)}} \end{mfpic}$ \end{array}\qquad \begin{array}{ccc} \hline \mbox{Section} & \mbox{Length }\mu\mbox{m} & \mbox{Diameter }\mu\mbox{m}\\[2pt] \hline (a) & 166.809245 & 7.089751 \\ (b) & 379.828386 & 9.189790 \\ (c) & 383.337494 & 4.160168 \\ (d) & 410.137845 & 4.762203 \\ (e) & 631.448520 & 6.345604 \\ (f) & 571.445800 & 5.200210 \\ (g) & 531.582750 & 2.000000 \\ (h) & 651.053246 & 3.000000 \\ (i) & 501.181023 & 4.000000 \\ (j) & 396.218388 & 2.500000 \\ \hline \end{array} \] \centering \parbox{5in}{\caption{\label{TestNeuron} A branched neuron satisfying the Rall conditions. The radii and lengths of the dendritic section are given in the right hand panel of the figure. A each branch point, $l/\sqrt{r}$ is fixed for all children of the branch point.}} \end{figure} To guarantee that any apparent errors between the closed form solution and the numerical solution are not due to the lack of precision with which the branched dendrite is represented as an equivalent cylinder, a high degree of accuracy is used in the specification of dendritic radii and section lengths in the model neuron. The model neuron illustrated in Figure \ref{TestNeuron} will be assumed to have a dendritic membrane of specific conductance $g_\mathrm{M}=0.091$ mS/cm$^2$ and specific capacitance $1.0\mu$F/cm$^2$, and an intracellular medium of conductance $g_\mathrm{A}=14.286$ mS/cm. With these biophysical properties, the equivalent cylinder has length one electrotonic unit. The soma of the test dendrite is assumed to have a membrane of area $A_\mathrm{S}$, specific conductance $g_\mathrm{S}=g_\mathrm{M}$ and specific capacitance $c_\mathrm{S}=c_\mathrm{M}$. \subsection{Closed form solution for the equivalent cylinder} The first step in the assessment of the performance of both compartmental models requires the construction of the closed form solution for the Rall equivalent cylinder under the action of input on the cylinder and at its soma. Consider a uniform cylindrical dendrite of radius $r$ and length $l$ attached to a soma of area $A_\mathrm{S}$ at its left hand end which is taken to be the point $x=0$ of a coordinate system with axis oriented along the length of the dendrite. If $V(x,t)$ is the deviation of the transmembrane potential from its resting value at point $x$ and time $t>0$, then $V(x,t)$ satisfies the cable equation \begin{equation}\label{es1} \ds 2\pi r\Big(c_\mathrm{M}\frac{\partial V}{\partial t} +g_\mathrm{M}V\Big)=\pi r^2 g_\mathrm{M}\frac{\partial^2V} {\partial x^2}-I(x,t)\,,\quad (x,t)\in(0,l)\times(0,\infty) \end{equation} where $c_\mathrm{M}$, $g_\mathrm{M}$ and $g_\mathrm{A}$ have their usual meanings and $I(x,t)$ is the linear density of exogenous current along the dendrite. A solution of equation (\ref{es1}) is sought satisfying the initial condition $V(x,0)=0$ and the boundary conditions \begin{equation}\label{es2} A_\mathrm{S}\Big(c_\mathrm{M}\,\frac{\partial V(0,t)}{\partial t} +g_\mathrm{M}V(0,t)\Big)=\pi r^2g_\mathrm{A}\, \frac{\partial V(0,t)}{\partial x}-I_\mathrm{S}(t)\,, \qquad\frac{\partial V(l,t)}{\partial x}=0\,, \end{equation} in which it has been recognised that the somal and dendritic membranes have identical specific capacitances and conductances. Prior to describing the critical steps in the construction of the exact mathematical solution to the initial boundary value problem posed by equations (\ref{es1}) and (\ref{es2}), it is convenient to introduce the well-known non-dimensional electrotonic length \begin{equation}\label{es3} L=l\,\sqrt{\ds\frac{2 g_\mathrm{M}}{r g_\mathrm{A}}}\,. \end{equation} The required solution is now constructed by observing that the series \begin{equation}\label{es4} V(x,t)=e^{-t/\tau}\,\Big[\,\phi_0(t)+\sum_\beta\;\phi_\beta(t) e^{-\beta^2 t/L^2\tau}\,\cos{\beta(1-x/l)}\,\Big]\,, \qquad\tau=\frac{c_\mathrm{M}}{g_\mathrm{M}}\,, \end{equation} satisfies the gradient boundary condition at $x=l$ for all values of $\beta$ and functions $\phi_0(t)$ and $\phi_\beta(t)$, and will also satisfy the initial condition $V(x,0)=0$ provided $\phi_0(0)=\phi_\beta(0)=0$. This series solution for $V(x,t)$ also satisfies the partial differential equation (\ref{es1}) provided \begin{equation}\label{es4} \ds \frac{d\phi_0}{dt}+\sum_\beta\,\frac{d\phi_\beta}{dt} \,e^{-\beta^2\,t/L^2\tau}\,\cos{\beta(1-x/l)} =-\frac{I(x,t)e^{t/\tau}}{2\pi r c_\mathrm{M}} \end{equation} and the boundary condition at the soma provided \begin{equation}\label{es5} \frac{d\phi_0}{dt}+\sum_\beta\,\Big[\,\frac{d\phi_\beta}{dt}\, \cos\beta-\frac{\beta\cos\beta}{\gamma\tau\,L^2}\,\Big(\, \gamma\beta+\tan\beta\,\Big)\,\phi_\beta\,\Big] \,e^{-\beta^2\,t/L^2\tau}= -\frac{I_\mathrm{S}(t)}{A_\mathrm{S} c_\mathrm{M}}\; e^{t/\tau} \end{equation} where $\gamma=A_\mathrm{S}/2\pi r l$, that is, $\gamma$ is the ratio of the membrane surface area of the soma to the membrane surface area of the dendrite. Equation (\ref{es5}) suggests that the values of $\beta$ in expression (\ref{es4}) should be chosen to be the zeros of the transcendental equation \begin{equation}\label{es6} \tan\beta+\gamma\beta = 0\,. \end{equation} With this choice for the values of $\beta$, equations (\ref{es4}) and (\ref{es5}) take the simplified form \begin{equation}\label{es7} \begin{array}{rcl} \ds \frac{d\phi_0}{dt}+\sum_\beta\,\frac{d\phi_\beta}{dt} \,e^{-\beta^2\,t/L^2\tau}\,\cos{\beta(1-x/l)} & = & -\ds\frac{I(x,t)e^{t/\tau}}{2\pi r c_\mathrm{M}}\,, \\[12pt] \ds\frac{d\phi_0}{dt}+\sum_\beta\,\frac{d\phi_\beta}{dt}\, \cos\beta\,e^{-\beta^2\,t/L^2\tau} & = & - \ds\frac{I_\mathrm{S}(t)}{A_\mathrm{S}c_\mathrm{M}} \; e^{t/\tau}\,. \end{array} \end{equation} The coefficients $\phi_0(t)$ and $\phi_\beta(t)$ are determined from equations (\ref{es7}) by two different procedures. To find $\phi_0(t)$, the first of equations (\ref{es7}) is integrated over $(0,l)$ to obtain \begin{equation}\label{es8} l\,\frac{d\phi_0}{dt}-\gamma\,l\,\sum_\beta\,\frac{d\phi_\beta}{dt} \,e^{-\beta^2\,t/L^2\tau}\,\cos\beta = -\frac{e^{t/\tau}}{2\pi r c_\mathrm{M}}\,\int_0^l\,I(x,t)\,dx\,. \end{equation} The summation in this expression is now eliminated using the second of equations (\ref{es7}) to get \begin{equation}\label{es9} \frac{d\phi_0}{dt}= -\frac{e^{t/\tau}} {(2\pi r l+A_\mathrm{S})c_\mathrm{M}}\,\Big[\, I_\mathrm{S}(t)+\int_0^l\,I(x,t)\,dx\,\Big]\,. \end{equation} Note that $(2\pi r l+A_\mathrm{S})c_\mathrm{M}$ is simply the total membrane capacitance of the dendrite and soma. The coefficient $\phi_0(t)$ is obtained by integrating equation (\ref{es9}) with respect to time with the initial condition $\phi_0(0)=0$ in the simulations to carried out here. The procedure to find $\phi_\beta(t)$ begins by subtracting equations (\ref{es7}) to get \begin{equation}\label{es10} \sum_\beta\,\frac{d\phi_\beta}{dt} \,e^{-\beta^2\,t/L^2\tau}\,\Big(\,\cos{\beta(1-x/l)} -\cos\beta\,\Big) = \frac{e^{t/\tau}}{2\pi r c_\mathrm{M}} \,\Big[\,\frac{I_\mathrm{S}(t)}{\gamma\,l}-I(x,t)\,\Big]\,. \end{equation} Further progress is based on the observation that if $\alpha$ and $\beta$ are solutions of equation (\ref{es6}) then \begin{equation}\label{es11} \int_0^l\,\cos\alpha\big(1-x/l\big)\big(\cos\beta\big(1-x/l\big) -\cos\beta\,\big)\,dx= \left[\begin{array}{cc} 0 & \alpha\ne\beta\,, \\[10pt] \ds\frac{l(1+\gamma\cos^2\alpha)}{2} & \alpha=\beta\,. \end{array}\right. \end{equation} Equation (\ref{es10}) is multiplied by $\cos\alpha\big(1-x/l\big)$ and integrated over $[0,l]$ with respect to $x$ to obtain \begin{equation}\label{es12} \frac{d\phi_\alpha}{dt}=-\frac{2e^{(1+\alpha^2/L^2)/\tau}} {(2\pi r l+A_\mathrm{S}\cos^2\alpha)c_\mathrm{M}}\,\Big[\, \int_0^1\,I(x,t)\cos\alpha\big(1-x/l\big)\,dx +\cos\alpha\,I_\mathrm{S}(t)\,\Big]\,. \end{equation} The coefficient $\phi_\alpha(t)$ is obtained by integrating equation (\ref{es12}) with respect to time with the initial condition $\phi_\alpha(0)=0$ in the simulations to be carried out here. Once $\phi_0(t)$ and $\phi_\alpha(t)$ are known, the potential is determined everywhere from expression (\ref{es4}). \subsubsection{Computation of current on equivalent cylinder} The special case in which the current $I(x,t)$ is constructed from a series of point currents $I_1, \cdots,I_n$ at locations $x_1,\cdots x_n$ from the soma of the equivalent cable is particularly useful for the investigation of large scale synaptic activity. In this case \begin{equation}\label{ec1} I(x,t)=\sum_{k=1}^n\;I_k(t)\delta(x-x_k) \end{equation} and the corresponding coefficient functions $\phi_0$ and $\phi_\alpha$ satisfy \begin{equation}\label{ec2} \begin{array}{rcl} \ds\frac{d\phi_0}{dt} & = &\ds -\frac{e^{t/\tau}} {(2\pi r l+A_\mathrm{S})c_\mathrm{M}}\,\Big[\, I_\mathrm{S}(t)+\sum_{k=1}^n\;I_k(t)\,\Big]\,,\\[10pt] \ds\frac{d\phi_\alpha}{dt} & = & \ds-\frac{2e^{(1+\alpha^2/L^2)/\tau}} {(2\pi r l+A_\mathrm{S}\cos^2\alpha)c_\mathrm{M}}\,\Big[\, \sum_{k=1}^n \;I_k(t)\cos\alpha\big(1-x_k/l\big) +\cos\alpha\,I_\mathrm{S}(t)\,\Big]\,. \end{array} \end{equation} If $X_k$ is the electrotonic distance of the input $I_k(t)$ at distance $x_k$ from the soma of the equivalent cylinder, then $I_k(t)$ is the sum of the exogenous current inputs to the branched neuron taken across all dendritic sections at electrotonic distance $X_k$ from the soma.