\section{The partitioning of transmembrane current}\label{part} Further progress requires expressions for $I_\mathrm{P}$ and $I_\mathrm{D}$ in terms of the biophysical and morphological properties of the segment and the membrane potentials at its proximal and distal boundaries. Each component of the transmembrane current (\ref{tc2}) is examined separately. \subsection{Point processes}\label{PointInput} We model synaptic current by the conventional constitutive equation $\mathcal{I}=g(t)(V-E)$ where $E$ is the reversal potential associated with the synapse and $g(t)$ is the time course of the synaptic conductance. Exogenous point current input takes the form $\mathcal{I}=\mathcal{I}(t)$ where $\mathcal{I}(t)$ is a known function of $t$. Suppose that $\lambda_1,\ \cdots,\lambda_n$ are sites of point input $\mathcal{I}_1,\ \cdots\ \mathcal{I}_n$ to the segment, then it follows from expressions (\ref{potc3}) that the contributions made to $I_\mathrm{P}$ and $I_\mathrm{D}$ from these currents are \begin{equation}\label{ei1} I_\mathrm{P} = \sum_{k=1}^n\, \frac{r_\mathrm{P}}{r_k}\,(1-\lambda_k)\,\mathcal{I}_k\,,\qquad -I_\mathrm{D} = \sum_{k=1}^n\, \frac{r_\mathrm{D}}{r_k}\,\lambda_k\,\mathcal{I}_k \end{equation} where $r_k=(1-\lambda_k)\,r_\mathrm{P} +\lambda_k\,r_\mathrm{D}$. In the special case of exogenous input alone, $\mathcal{I}_k=\mathcal{I}_k(t)$ and expressions (\ref{ei1}) give the exact partitioning of this input. The procedure used by the anonymous reviewer (see Section \ref{assertion}) is an application of equations (\ref{ei1}) to a uniform segment, that is, \begin{equation}\label{ei11} I_\mathrm{P} = \sum_{k=1}^n\, (1-\lambda_k)\,\mathcal{I}_k\,,\qquad -I_\mathrm{D} = \sum_{k=1}^n\, \lambda_k\,\mathcal{I}_k\,. \end{equation} However, when synaptic input is present, expressions (\ref{ei1}) for $I\mathrm{P}$ and $I_\mathrm{D}$ will contain the (unknown) membrane potentials at the synapses, and its use will therefore require these potentials to be estimated in terms of known functions and the potentials at the proximal and distal boundaries of the segment. One obvious way to estimate the potential at the site of a synapse is to use the potential distribution (\ref{mp3}). However, the efficacy of this approximation relies on the validity of the assumption that transmembrane current is negligible by comparison with axial current. In the presence of synaptic input, transmembrane current need not be negligible by comparison with axial current, and so the partitioning rule must be developed to include this possibility. \subsection{The partitioning rule in the presence of synaptic input}\label{stage1} The partitioning of point process input set out in Subsection \ref{PointInput} is developed by noting that this rule may be applied to the division of transmembrane current between nearest-neighbour sites of a point input, and that the proximal and distal boundaries of the segment are simply special cases of these sites. This application of the partitioning rule is equivalent to considering the balance between axial current and point current at each site of input ignoring the influence of distributed transmembrane current between sites. The implementation of the partitioning rule for general point process input is done in two stages. The first stage of the discussion focusses on the construction of the equations satisfied by the potentials at the sites of the point input, and the second stage of the discussion describes how these equations may be solved numerically and is contained in appendix one. \subsubsection{Equations for the potentials} In general, the locations of point process input can be taken to divide a segment into sub-segments, defined to be the lengths of the segment between the locations of these inputs. Figure \ref{synapses} is a schematic representation of a segment of length $h$ illustrating the relative locations $\lambda_1,\ \cdots, \lambda_n$ of $n$ point inputs $\mathcal{I}_1,\ \cdots\ \mathcal{I}_n$ on a segment. Suppose axial current $I_k$ flows to the point $\lambda_k$ from the point $\lambda_{k-1}$ and that $V_k$ is the potential at the point $\lambda_k$. \begin{figure}[!h] \centering \includegraphics[ ]{NCFig3.eps} \parbox{4.2in}{\caption{\label{synapses} Configuration of point input to a dendritic segment of length $h$. Here $\mathcal{I}_k=g_k(t)(V_k-E_k)$ in the case of synaptic input at $\lambda_k$ or $\mathcal{I}_k=\mathcal{I}_k(t)$ if the input is an exogenous point current.}} \end{figure} %\begin{figure}[!h] %\centerline{\qquad\begin{mfpic}[0.9][1]{-50}{400}{-30}{50} %\pen{1pt} %\headlen7pt %% %% Sealed cable %\arrow\lines{(0,20),(25,20)} %\arrow\lines{(40,20),(65,20)} %\arrow\lines{(120,20),(145,20)} %\arrow\lines{(160,20),(185,20)} %\arrow\lines{(240,20),(265,20)} %\arrow\lines{(280,20),(305,20)} %% %% %\dotspace=4pt %\dotsize=2pt %\dotted\lines{(75,20),(110,20)} %\dotted\lines{(195,20),(230,20)} %% %% Nodes on sealed cable %\tlabel[cc](0,20){\large $\bullet$} %\tlabel[cc](40,20){\large $\bullet$} %\tlabel[cc](120,20){\large $\bullet$} %\tlabel[cc](160,20){\large $\bullet$} %\tlabel[cc](240,20){\large $\bullet$} %\tlabel[cc](280,20){\large $\bullet$} %\tlabel[cc](320,20){\large $\bullet$} %% %% Points on sealed cable %\tlabel[br](0,30){$\lambda_0=0$} %\tlabel[bc](40,30){$\lambda_1$} %\tlabel[bc](120,30){$\lambda_{k-1}$} %\tlabel[bc](160,30){$\lambda_k$} %\tlabel[bc](240,30){$\lambda_{n-1}$} %\tlabel[bc](280,30){$\lambda_n$} %\tlabel[bl](320,30){$\lambda_{n+1}=1$} %% %\tlabel[cc](20,10){$I_1$} %\tlabel[cc](60,10){$I_2$} %\tlabel[cc](140,10){$I_k$} %\tlabel[cc](180,10){$I_{k+1}$} %\tlabel[cc](260,10){$I_n$} %\tlabel[cc](300,10){$I_{n+1}$} %% %% Sealed cable %\arrow\lines{(40,10),(40,-10)} %\tlabel[tc](40,-15){\textsf{$\mathcal{I}_1$}} %\arrow\lines{(120,10),(120,-10)} %\tlabel[tc](120,-15){\textsf{$\mathcal{I}_{k-1}$}} %\arrow\lines{(160,10),(160,-10)} %\tlabel[tc](160,-15){\textsf{$\mathcal{I}_k$}} %\arrow\lines{(240,10),(240,-10)} %\tlabel[tc](240,-15){\textsf{$\mathcal{I}_{n-1}$}} %\arrow\lines{(280,10),(280,-10)} %\tlabel[tc](280,-15){\textsf{$\mathcal{I}_n$}} %\end{mfpic}} %\centering %\parbox{4in}{\caption{\label{synapses} Configuration of %point input to a dendritic segment of length $h$. Here %$\mathcal{I}_k=g_k(t)(V_k-E_k)$ in the case of a synapse at %$\lambda_k$ or $\mathcal{I}_k=\mathcal{I}_k(t)$ in the case of an %exogenous input.}} %\end{figure} Since distributed current alone can flow across the membrane of a sub-segment, equation (\ref{mp2}) may be used to describe the axial current in the $k$-th sub-segment by replacing $V_\mathrm{P}$ and $r_\mathrm{P}$ with $V_{k-1}$ and $r_{k-1}$ respectively, by replacing $V_\mathrm{D}$ and $r_\mathrm{D}$ with $V_k$ and $r_k$ respectively, and by replacing $h$ with $h(\lambda_k- \lambda_{k-1})$, the length of the sub-segment. If $V_1,\ \cdots\ ,V_n$ are the potentials at the points $\lambda_1,\ \cdots, \lambda_n$ at which point process input is applied, then the axial currents $I_1,\ \cdots\ , I_{n+1}$ are related to the potentials $V_1,\ \cdots\ ,V_n$ by the equations \begin{equation}\label{syn2} I_k = \ds\frac{\pi g_\mathrm{A}r_{k-1}\,r_k} {h(\lambda_k-\lambda_{k-1})}\,\big(V_{k-1}-V_k\,\big)\,,\qquad k=1,\cdots,(n+1) \end{equation} where it is understood that $\lambda_0=0$, $\lambda_{n+1}=1$, $r_0=r_\mathrm{P}$, $r_{n+1}=r_\mathrm{D}$, $V_0=V_\mathrm{P}$ and $V_{n+1}=V_\mathrm{D}$. Equations (\ref{syn2}) are rearranged in the form \[ V_{k-1}-V_k=\frac{h}{\pi g_\mathrm{A}}\, \frac{(\lambda_k-\lambda_{k-1})}{r_{k-1}\,r_k} \,I_k \,,\qquad k=1,\cdots,(n+1)\,. \] By recognising that $V_k-V_\mathrm{P}$ is the sum of the potential differences across the first $k$ sub-segments, it follows immediately from the previous equation that \begin{equation}\label{syn3} V_k = V_\mathrm{P} -\frac{h}{\pi g_\mathrm{A}}\,\sum_{j=1}^k \, \frac{(\lambda_j-\lambda_{j-1})}{r_{j-1}\,r_j}\,I_j \,,\qquad k=1,\cdots,n\,. \end{equation} If $\lambda_k$ is the point of application of an exogenous input of strength $\mathcal{I}_k(t)$ then \begin{equation}\label{syn1b} I_{k+1}+\mathcal{I}_k(t) = I_k\,. \end{equation} On the other hand, if there is a synapse at $\lambda_k$, then $\mathcal{I}_k=g_k(t)(V_k-E_k)$ and conservation of current requires that \begin{equation}\label{syn1a} I_{k+1}+g_k(V_k-E_k) = I_k\,. \end{equation} Formula (\ref{syn3}) for $V_k$ is now used to rewrite equation (\ref{syn1a}) in terms of axial currents to get \begin{equation}\label{syn4} I_k-I_{k+1}+\ds\frac{g_k h}{\pi g_\mathrm{A}}\sum_{j=1}^k \frac{(\lambda_j-\lambda_{j-1})}{r_{j-1}\,r_j}\,I_j = g_k\big(\,V_\mathrm{P}-E_k\,\big)\,,\qquad k=1,\cdots,n\,. \end{equation} Thus conservation of current at the points $\lambda_1,\ \cdots,\ \lambda_n$ gives rise to $n$ equations for the $(n+1)$ currents $I_1,\ \cdots,\ I_{n+1}$. In order to complete the system of equations specifying $I_1,\ \cdots,\ I_{n+1}$, note that the potentials at the proximal and distal boundaries of the segment are known, and that this condition constrains the currents $I_1,\ \cdots,\ I_{n+1}$ to satisfy \begin{equation}\label{syn5} \sum_{j=1}^{n+1} \frac{(\lambda_j-\lambda_{j-1}) r_\mathrm{P}r_\mathrm{D} } {r_{j-1}\,r_j}\,I_j = \frac{\pi g_\mathrm{A}r_\mathrm{P}r_\mathrm{D}}{h}\, \big(\,V_\mathrm{P}-V_\mathrm{D}\,\big)\,. \end{equation} Equation (\ref{syn5}) is obtained from equation (\ref{syn3}) by asserting that $V_{n+1}=V_\mathrm{D}$. Note also that equation (\ref{syn5}) has been multiplied by the factor $r_\mathrm{P} r_\mathrm{D}$ for the benefit of numerical work to make the coefficients of the currents in the rescaled equation order one. To summarise, the currents $I_1, \dots I_{n+1}$ are determined by solving the linear equations \begin{equation}\label{syn6} \begin{array}{c} \left.\begin{array}{rcl} I_k-I_{k+1} & = &\mathcal{I}_k(t) \,\\ \ds I_k-I_{k+1}+\ds\frac{g_k h}{\pi g_\mathrm{A}}\sum_{j=1}^k \frac{(\lambda_j-\lambda_{j-1})}{r_{j-1}\,r_j}\,I_j & = & g_k\big(\,V_\mathrm{P}-E_k\,\big)\,, \end{array}\right] \qquad k=1,\cdots,n\\[25pt] \ds\sum_{j=1}^{n+1} \frac{(\lambda_j-\lambda_{j-1})r_\mathrm{P}r_\mathrm{D}} {r_{j-1}\,r_j}\,I_j = \ds\frac{\pi g_\mathrm{A}r_\mathrm{P}r_\mathrm{D}}{h}\, \big(\,V_\mathrm{P}-V_\mathrm{D}\,\big) \end{array} \end{equation} where the first equation is used if $\lambda_k$ is the location of an exogenous point input and the second equation is used if $\lambda_k$ is the location of a synapse. The following example illustrates an application of equations (\ref{syn6}) to the case of a single synapse and a single exogenous input. \paragraph{Example} Consider a segment which receives synaptic input of conductance $g_1(t)$ at $\lambda_1$ and exogenous current $\mathcal{I}_2(t)$ at $\lambda_2$ where $0 < \lambda_1 < \lambda_2 < 1$. This partitioning of the segment gives rise to three currents $I_1$, $I_2$ and $I_3$. The determination of $I_\mathrm{P}$ and $I_\mathrm{D}$ will require expressions for $I_1$ and $I_3$ in terms of the known conductance $g_1(t)$, the known current $\mathcal{I}_2(t)$, the geometry of the segment, and finally, the potentials $V_\mathrm{P}$ and $V_\mathrm{D}$ at the proximal and distal boundaries of the segment. The formulation of this problem will involve the current $I_2$ as an auxiliary variable, but the solution for $I_2$ is not sought. It follows from equations (\ref{syn6}) that $I_1$, $I_2$ and $I_3$ satisfy \begin{equation}\label{syn10} \begin{array}{rcl} I_1-I_2+\ds\frac{g_1(t) h}{\pi g_\mathrm{A}}\frac{(\lambda_1-\lambda_0)}{r_0\,r_1}\,I_1 & = & g_1(t)\big(\,V_\mathrm{P}-E_1\,\big)\,,\\[10pt] I_2-I_3 & = & \mathcal{I}_2(t)\,,\\[10pt] \ds\frac{(\lambda_1-\lambda_0)r_0\,r_3}{r_0\,r_1}\,I_1 +\frac{(\lambda_2-\lambda_1)r_0\,r_3}{r_1\,r_2}\,I_2+ \frac{(\lambda_3-\lambda_2)r_0\,r_3}{r_2\,r_3}\,I_3 & = & \ds\frac{\pi g_\mathrm{A}r_0\,r_3}{h}\,\big(\,V_\mathrm{P}-V_\mathrm{D}\,\big)\,. \end{array} \end{equation} The first equation in (\ref{syn10}) is equation (\ref{syn4}) applied at the location of the synapse ($\lambda=\lambda_1$), and the second equation in (\ref{syn10}) is equation (\ref{syn1b}) applied at the location of the exogenous current ($\lambda=\lambda_2$). The last equation in (\ref{syn10}) is the the consistency condition expressed by equation (\ref{syn5}). Equations (\ref{syn10}) can be expressed in matrix form $AX=B$ where $X=\big[\,I_1,I_2,I_3\,\big]^\mathrm{T}$ and \[ A=\left[\begin{array}{ccc} 1+\ds\frac{g_1(t) h}{\pi g_\mathrm{A}}\frac{(\lambda_1-\lambda_0)} {r_0\,r_1} & -1 & 0 \\[10pt] 0 & 1 & -1 \\[10pt] \ds\frac{(\lambda_1-\lambda_0)r_3}{r_1} & \ds\frac{(\lambda_2-\lambda_1)r_0\,r_3}{r_1\,r_2} & \ds\frac{(\lambda_3-\lambda_2)r_0}{r_2} \end{array}\right],\quad B=\left[\begin{array}{c} g_1(t)\big(V_\mathrm{P}-E_1) \\[20pt] \mathcal{I}_2(t) \\[20pt] \ds\frac{\pi g_\mathrm{A}r_0\,r_3}{h}\big(V_\mathrm{P}-V_\mathrm{D}\big) \end{array}\right]. \] It is a matter of careful algebra to show that the currents $I_1$ and $I_3$ are given by the expressions \begin{equation}\label{syn11} \begin{array}{rcl} I_1 & = & \frac{\ds\frac{\pi g_\mathrm{A}r_0\,r_3}{h} \big(V_\mathrm{P}-V_\mathrm{D}\big) +(1-\lambda_1)\frac{r_0}{r_1}g_1(t)\big(V_\mathrm{P}-E_1\big) +\mathcal{I}_2(t)(1-\lambda_2)\frac{r_0}{r_2}}{\ds 1+ \frac{\lambda_1(1-\lambda_1)hg_1(t)\strut}{\pi g_\mathrm{A}r_1^2}}\,,\\[35pt] I_3 & = & \frac{\begin{array}{l} \ds\frac{\pi g_\mathrm{A}r_0\,r_3}{h} \Big(1+\frac{\lambda_1 h g_1(t)} {\pi g_\mathrm{A}r_0r_1}\Big) \big(V_\mathrm{P}-V_\mathrm{D}\big) -\frac{\lambda_1 r_3}{r_1}g_1(t)\big(V_\mathrm{P}-E_1\big)\\[10pt] \qquad\qquad\ds-\;\mathcal{I}_2(t)\frac{r_3}{r_2}\Big(\lambda_2 +\frac{\lambda_1(\lambda_2-\lambda_1) h g_1(t)}{\pi g_\mathrm{A} r_1^2}\Big)\end{array}} {\ds 1+\frac{\lambda_1(1-\lambda_1)hg_1(t)\strut}{\pi g_\mathrm{A}r_1^2}}\,. \end{array} \end{equation} Of course, the complexity of these expressions for $I_1$ and $I_3$ is in part due to the fact that they combine the axial current in the segment in the absence of point input with the modification to this current due to the presence of the synaptic input at $\lambda=\lambda_1$ and the exogenous input at $\lambda=\lambda_2$. The perturbations $I_\mathrm{P}=I_1-I_\mathrm{PD}$ and $I_\mathrm{D}=I_3-I_\mathrm{PD}$ to the axial current at the proximal and distal boundaries of the segment are now calculated from formulae (\ref{mp2}) and (\ref{syn11}) to give \begin{equation}\label{syn12} \begin{array}{rcl} I_\mathrm{P} & = & \frac{\ds\frac{r_0(1-\lambda_1)}{r_1}\, g_1(t)\big(\,\psi_1-E_1\,\big) +\mathcal{I}_2(t)(1-\lambda_2)\frac{r_0}{r_2}}{\ds 1+ \frac{\lambda_1(1-\lambda_1)hg_1(t)\strut}{\pi g_\mathrm{A}r_1^2}}\,,\\[35pt] -\,I_\mathrm{D} & = & \frac{\ds\frac{\lambda_1 r_3}{r_1}\,g_1(t)\big(\,\psi_1-E_1\,\big) +\mathcal{I}_2(t)\frac{r_3}{r_2}\Big[\lambda_2+\frac{g_1(t) h \lambda_1(\lambda_2-\lambda_1)}{\pi g_\mathrm{A}r_1^2}\Big]} {\ds 1+\frac{\lambda_1(1-\lambda_1)hg_1(t)\strut}{\pi g_\mathrm{A}r_1^2}}\,. \end{array} \end{equation} where $\psi_1$ is the potential \begin{equation}\label{syn13} \psi_1 = \frac{r_0(1-\lambda_1) V_\mathrm{P} + r_3 \lambda_1 V_\mathrm{D}}{r_1}\,. \end{equation} It is clear from (\ref{mp3}) that $\psi_1$ would be the model potential at $\lambda=\lambda_1$ in the absence of transmembrane current, and therefore $g_1(t)\big(\,\psi_1-E_1\,\big)$ would be the transmembrane current supplied by the synapse at $\lambda=\lambda_1$ assuming that this synaptic current is negligible by comparison with the axial current. Furthermore, if the common denominator of expressions (\ref{syn12}) is treated as unity, then expressions (\ref{syn12}) simplify to \begin{equation}\label{syn14} \begin{array}{rcl} I_\mathrm{P} & = & \ds\frac{r_0(1-\lambda_1)}{r_1}\, g_1(t)\big(\,\psi_1-E_1\,\big) +\mathcal{I}_2(t)(1-\lambda_2)\frac{r_0}{r_2}\,,\\[10pt] -\,I_\mathrm{D} & = & \ds\frac{\lambda_1 r_3}{r_1}\,g_1(t)\big(\,\psi_1-E_1\,\big) +\mathcal{I}_2(t)\frac{r_3}{r_2}\,\lambda_2\,, \end{array} \end{equation} which are identical to equations (\ref{ei1}) with $\mathcal{I}_1=g_1(t)\big(\,\psi_1-E_1\,\big)$ and $\mathcal{I}_2=\mathcal{I}(t)$. Expressions (\ref{syn14}) are those that would follow from making the assumption that transmembrane current is negligible by comparison with axial current in the presence of synaptic input. Consequently, the use of expressions (\ref{syn14}) for $I_\mathrm{P}$ and $I_\mathrm{D}$ would overestimate the true strength of both the synaptic and the exogenous input to a segment. In conclusion, synaptic and exogenous input do not act independently when a segment receives both types of point process input. The second stage of the analysis deals with the construction and numerical solution of the equations constructed from the particular configuration of synapses and exogenous input, and is given in Appendix 1. \subsection{Distributed transmembrane current} All distributed transmembrane current is treated using equations (\ref{potc3}) with appropriate expressions for $J(\lambda,t)$, and with occurrences of the membrane potential approximated by expression (\ref{mp3}). Capacitative current and intrinsic voltage-dependent current are considered separately. \subsubsection{Capacitative transmembrane current}\label{CapCurrent} The component of capacitative current in (\ref{tc2}) is estimated by approximating the true membrane potential along the segment by expression (\ref{mp3}) to obtain \begin{equation}\label{dtc2} J^\mathrm{\,cap}(\lambda,t)=2\pi c_\mathrm{M}(\lambda) r(\lambda) \frac{dV(\lambda,t)}{dt} = 2\pi c_\mathrm{M}(\lambda) \Big[\,(1-\lambda)\,r_\mathrm{P}\,\frac{dV_\mathrm{P}}{dt} +\lambda\,r_\mathrm{D}\frac{dV_\mathrm{D}}{dt}\,\Big]\,. \end{equation} It now follows from expressions (\ref{potc3}) that the contributions made by capacitative transmembrane current to $I_\mathrm{P}$ and to $I_\mathrm{D}$ are \begin{equation}\label{dtc3} \begin{array}{rcl} I^\mathrm{\,cap}_\mathrm{P} & = & 2\pi\, r_\mathrm{P} h \ds\Big[r_\mathrm{P}\frac{dV_\mathrm{P}}{dt} \int_0^1\frac{(1-\lambda)^2 c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}} +r_\mathrm{D}\frac{dV_\mathrm{D}}{dt} \int_0^1 \frac{\lambda(1-\lambda)c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}}\Big],\\[12pt] -I^\mathrm{\,cap}_\mathrm{D} & = & 2\pi\, r_\mathrm{D} h \ds\Big[r_\mathrm{P}\frac{dV_\mathrm{P}}{dt}\int_0^1\, \frac{\lambda(1-\lambda)c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}}+r_\mathrm{D} \frac{dV_\mathrm{D}}{dt}\int_0^1\,\frac{\lambda^2 c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}}\,\Big]\,. \end{array} \end{equation} If the compartment is a uniform cylinder with constant specific membrane capacitance, the perturbations in axial current at the proximal and distal boundaries of the segment may be computed by evaluating the integrals in formulae (\ref{dtc3}) to get \begin{equation}\label{dtc4} I^\mathrm{\,cap}_\mathrm{P} = \frac{C}{6}\, \Big[\,2\frac{dV_\mathrm{P}}{dt}+\frac{dV_\mathrm{D}}{dt}\,\Big], \qquad -I^\mathrm{\,cap}_\mathrm{D} = \frac{C}{6}\, \Big[\,\frac{dV_\mathrm{P}}{dt}+2\frac{dV_\mathrm{D}}{dt} \,\Big] \end{equation} where $C$ is the total membrane capacitance of the segment. The calculation for tapered segments with non-uniform membrane specific capacitance is presented in Appendix 2. \subsubsection{Intrinsic voltage-dependent transmembrane current} The construction of $I^\mathrm{\,cap}_\mathrm{P}$ and $I^\mathrm{\,cap}_\mathrm{D}$ for a membrane with non-constant specific capacitance provides the framework for treating intrinsic voltage-dependent transmembrane current. For an ionic species $\alpha$, this current is usually described by the constitutive formula $J=g_\alpha(\bs{\theta})(V-E_\alpha)$ where $V$ is the membrane potential, $E_\alpha$ is the reversal potential for species $\alpha$ and $g_\alpha(\bs{\theta})$ is a membrane conductance which depends on a set of auxiliary variables $\bs{\theta}$, for example, the probabilities $m$, $n$ and $h$ appearing in the Hodgkin-Huxley (\cite{Hodgkin52}) model. In the case of a \emph{passive} membrane, the conductance $g_\alpha(\bs{\theta})$ takes a constant (but different) value for each species. The total transmembrane current density is obtained by summing the transmembrane current densities of each ionic species to get \begin{equation}\label{dtc8} J=\sum_\alpha\, g_\alpha(V-E_\alpha)= g_\mathrm{M}(V-E)\,, \qquad g_\mathrm{M}=\sum_\alpha g_\alpha\,,\quad E=\sum_\alpha \frac{g_\alpha}{g_\mathrm{M}}\, E_\alpha\,. \end{equation} Thus the constitutive equation for the transmembrane current density of a passive membrane is $J=g_\mathrm{M}(V-E)$ where $g_\mathrm{M}$ (mS/cm$^2$) is the total membrane conductance and $E$ plays the role of a reversal potential. When the segment is a uniform cylinder with a membrane of constant conductance, the contributions to $I_\mathrm{P}$ and $I_\mathrm{D}$ mimic formulae (\ref{dtc4}) for capacitative current and are respectively \begin{equation}\label{dtc10} I^\mathrm{\,IVDC}_\mathrm{P} = \frac{G}{6}\, \Big[\,2(V_\mathrm{P}-E)+(V_\mathrm{D}-E)\Big]\,,\qquad -I^\mathrm{\,IVDC}_\mathrm{D} = \frac{G}{6} \Big[\,(V_\mathrm{P}-E)+2(V_\mathrm{D}-E)\Big] \end{equation} where $G$ is the total membrane conductance of the segment. The treatment of tapered segments with non-uniform membrane conductance is presented in Appendix 3.