\addtocontents{toc}{\vskip8pt} \addtocontents{toc}{\bf\hskip18pt References\hfill \thepage} \addtocontents{toc}{\vskip4pt} \begin{thebibliography}{99} \bibitem[1997]{Bower97} Bower JM and Beeman D (1997) The book of GENESIS. 2nd ed. NY Telos. \bibitem[1997]{Hines97} Hines M and Carnevale N (1997) The NEURON simulation environmment. \emph{Neural Computation} 9:1179-1209. \bibitem[1952]{Hodgkin52} Hodgkin AL and Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. \emph{Journal of Physiology} 117:500-544. \bibitem[2003]{Lindsay03} Lindsay KA, Rosenberg JR and Tucker G (2003). Analytical and numerical construction of equivalent cables. \emph{Mathematical Biosciences} 184:137-164. \bibitem[1999]{Oram99} Oram MW, Wiener MC, Lestienne R, Richmond BJ (1999) Stochastic nature of precisely timed spike patterns in visual system neuronal responses. \emph{Journal of Neurophysiology} 81:3021-3033. \bibitem[2003]{Poirazi03} Poriazi P, Brannon T, and Mel BW (2003). Pyramidal neuron as two-layer neural network \emph{Neuron} 37:989-999. \bibitem[1964]{Rall64} Rall W (1964) Theoretical significance of dendritic trees and motoneuron input-output relations. In \emph{Neural Theory and Modelling.} R.F.Reiss (ed.). Stanford University Press, Stanford CA. \bibitem[1998]{Segev98} Segev I and Burke RE (1998) Compartmental models of complex neurons. In \emph{Methods in Neuronal Modeling - from ions to networks} 2nd Edition. Koch C and Segev I (eds.). Ch.3, pp 93-136. MIT Press, MA. \end{thebibliography} \pagebreak[4] \textbf{Appendix 1 -- Numerical estimation of perturbations to axial current} The example in Subsection \ref{stage1} demonstrates that synaptic and exogenous input do not act independently. This means that both types of point process input must be treated simultaneously in the construction of the equations to determine the perturbations $I_\mathrm{P}$ and $I_\mathrm{D}$ of the axial current. The equations for the perturbations in axial current are constructed by replacing $I_k$ in equations (\ref{syn1b}, \ref{syn4} and \ref{syn5}) by $I_\mathrm{PD}+\widehat{I}_k$ where $\widehat{I}_k$ is the perturbation to $I_k$. If $\lambda=\lambda_k$ is the site of an exogenous input then the appropriate equation for the perturbed currents is \begin{equation}\label{syn17a} \widehat{I}_k-\widehat{I}_{k+1}=\mathcal{I}_k(t)\,, \end{equation} whereas if $\lambda=\lambda_k$ is the site of a synapse with conductance $g_k(t)$, the appropriate equation is \begin{equation}\label{syn17b} \widehat{I}_k-\widehat{I}_{k+1}+\frac{g_k h}{\pi g_\mathrm{A}} \sum_{j=1}^k \frac{(\lambda_j-\lambda_{j-1})}{r_{j-1}\,r_j}\, \widehat{I}_j = \mathcal{I}_k(t) \end{equation} where the current $\mathcal{I}_k(t)$ is defined by the formula \begin{equation}\label{syn17c} \mathcal{I}_k(t)=g_k(t)\,\Big[\,(1-\lambda_k)\frac{r_\mathrm{P}}{r_k} \,V_\mathrm{P}+\lambda_k\frac{r_\mathrm{D}}{r_k}\, V_\mathrm{D} -E_k\,\Big]\,. \end{equation} The derivation of equation (\ref{syn17b}) takes advantage of the identity \[ \sum_{j=1}^k \,\frac{(\lambda_j-\lambda_{j-1})}{r_{j-1}\,r_j} =\frac{\lambda_k}{r_\mathrm{P}\,r_k}\,, \] which can be established by induction. Note that expression (\ref{syn17c}) for $\mathcal{I}_k(t)$ when $\lambda=\lambda_k$ is a synapse is precisely the current that would be expected to flow at the synapse if the distribution of potential on the segment was described by expression (\ref{mp3}). Finally, equation (\ref{syn5}) simplifies to \begin{equation}\label{syn17d} \sum_{j=1}^{n+1} \frac{(\lambda_j-\lambda_{j-1})r_\mathrm{P}\,r_\mathrm{D}} {r_{j-1}\,r_j}\,\widehat{I}_j = 0 \end{equation} where the constant multiplier $r_\mathrm{P}\,r_\mathrm{D}$ has been added without loss to make the coefficients of this equation comparable to those appearing in the first $n$ equations. Equations (\ref{syn17a},\ref{syn17b} and \ref{syn17d}) may be represented compactly in matrix notation by \begin{equation}\label{syn18} A\,\widehat{I}+GC\,\widehat{I}=\mathcal{I} \end{equation} where $\widehat{I}=[\widehat{I}_1,\ \cdots\ ,\widehat{I}_{n+1} ]^\mathrm{T}$ is the $(n+1)$ dimensional column vector of perturbations in axial current, $\mathcal{I}=[\mathcal{I}_1,\ \cdots\ , \mathcal{I}_n,0\,]^\mathrm{T}$ and $A$ is the $(n+1)\times(n+1)$ matrix \begin{equation}\label{syn19} \left[\begin{array}{ccccccc} 1 & \hskip-9pt-1 & 0 & \cdots & \cdots & 0 \\[5pt] 0 & 1 & \hskip-9pt-1 & \cdots & \cdots & 0 \\[5pt] 0 & 0 & 1 & \cdots & \cdots & 0 \\[5pt] \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\[5pt] 0 & 0 & 0 & \cdots & 1 & \hskip-9pt-1 \\[5pt] \ds\frac{\lambda_1 r_\mathrm{P}r_\mathrm{D}}{r_0 r_1} & \ds\frac{(\lambda_2-\lambda_1)r_\mathrm{P}r_\mathrm{D}}{r_1 r_2} & \ds\frac{(\lambda_3-\lambda_2)r_\mathrm{P}r_\mathrm{D}}{r_2 r_3} & \cdots & \ds\frac{(\lambda_n-\lambda_{n-1})r_\mathrm{P}r_\mathrm{D}}{r_{n-1} r_n} & \ds\frac{(1-\lambda_n)r_\mathrm{P}r_\mathrm{D}} {r_n r_{n+1}} \end{array}\right]\,. \end{equation} Briefly, $G$ is an $(n+1)\times(n+1)$ diagonal matrix in which the $(k,k)$ entry is zero if $\lambda_k$ is the site of an exogenous input and takes the value $g_k(t)$ if $\lambda_k$ is the site of a synapse. The $(n+1,n+1)$ entry of $G$ is always zero. The matrix $C$ is a lower triangular matrix of type $(n+1)\times(n+1)$ in which all the nonzero entries in the $k^{th}$ column take the value $(\lambda_k-\lambda_{k-1})/(\pi g_\mathrm{A}r_{k-1}\,r_k)$. \textbf{Multiple point inputs} To take account of the influence of the matrix $GC$ in the solution of equation (\ref{syn18}), the algorithm \begin{equation}\label{syn20} A\widehat{I}^{(m+1)}=\mathcal{I}-GC\widehat{I}^{(m)} \end{equation} is iterated with initial condition $A\widehat{I}^{(0)}=\mathcal{I}$. Although it can be demonstrated that the matrix $A$ has a simple closed form expression for its inverse, it is not (numerically) efficient to use this expression to solve equation (\ref{syn20}). Instead, we observe that $A$ has an $LU$ factorisation in which $U$ is the $(n+1)\times(n+1)$ upper triangular matrix with ones everywhere in the main diagonal, negative ones everywhere in the super-diagonal and zero everywhere else, and $L$ is the $(n+1)\times(n+1)$ lower triangular matrix \begin{equation}\label{syn21} \left[\begin{array}{ccccccc} 1 & 0 & 0 & 0 & \cdots & \cdots & 0 \\[5pt] 0 & 1 & 0 & 0 & \cdots & \cdots & 0 \\[5pt] 0 & 0 & 1 & 0 & \cdots & \cdots & 0 \\[5pt] \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\[5pt] \ds\frac{\lambda_1\,r_\mathrm{P}}{r_1} & \ds\frac{\lambda_2\,r_\mathrm{P}}{r_2} & \ds\frac{\lambda_3\,r_\mathrm{P}}{r_3} & \ds\frac{\lambda_4\,r_\mathrm{P}}{r_4} & \cdots & \ds\frac{\lambda_n\,r_\mathrm{P}}{r_n} & 1 \end{array}\right]\,. \end{equation} Since $\mathcal{I}$ is a linear combination of $V_\mathrm{P}$, $V_\mathrm{D}$ and a voltage independent term, then the solution to equation (\ref{syn20}) has general representation \begin{equation}\label{syn22} \widehat{I} = \phi_1(t)V_\mathrm{P} + \phi_2(t)V_\mathrm{D}+\phi_3(t) \end{equation} where $\phi_1(t)$, $\phi_2(t)$ and $\phi_3(t)$ satisfy \begin{equation}\label{syn23} \begin{array}{rcl} A\,\phi_1 & = & \Big[\,g_1(1-\lambda_1)\ds\frac{r_\mathrm{P}}{r_1} ,\ \cdots \ ,\ g_n(1-\lambda_n)\ds\frac{r_\mathrm{P}}{r_n},0\,\Big]^\mathrm{T} -GC\,\phi_1\,,\\[10pt] A\,\phi_2 & = & \Big[\,g_1\lambda_1\ds\frac{r_\mathrm{D}}{r_1} ,\ \cdots \ ,\ g_n\lambda_n\ds\frac{r_\mathrm{D}}{r_n},0\,\Big]^\mathrm{T}-GC\,\phi_2\,,\\[10pt] A\,\phi_3 & = & -\Big[\,g_1E_1,\ \cdots \ ,\ g_nE_n,0\,\Big]^\mathrm{T}-GC\,\phi_3\,. \end{array} \end{equation} The equations (\ref{syn23}) for $\phi_1(t)$, $\phi_2(t)$ and $\phi_3(t)$ may be solved easily by an iterative procedure based on the sparse $LU$ factorisation of $A$. If the conductances $g_1,\ \cdots ,\ g_n$ are sufficiently small, the solution of equations (\ref{syn23}) is well approximated by ignoring the second term on the right hand side or equations (\ref{syn23}). This approximation is equivalent to using the partitioning rule (\ref{potc3}) in combination with formula (\ref{mp3}) for the membrane potential. \textbf{Special case of exogenous input} If $\lambda_1,\ \cdots\ ,\lambda_n$ are sites of exogenous input $\mathcal{I}_1,\ \cdots \,\mathcal{I}_n$ then $G=0$ in equation (\ref{syn20}) and $\mathcal{I}$ is the vector of exogenous currents. In this case, expressions (\ref{ei1}) for $I_\mathrm{P}$ and $I_\mathrm{D}$ are obtained immediately as the first and last entries in the solution $\widehat{I}$ of equation $A\,\widehat{I}=LU\,\widehat{I}=\mathcal{I}$. \textbf{Appendix 2 -- The partitioning of capacitative current on tapered cylinders} Recall from expressions (\ref{potc3}) that the contributions made to the proximal and distal perturbations to the axial current as a consequence of capacitative transmembrane current on a tapered segment with membrane of variable specific capacitance are respectively \begin{equation}\label{dtc13} \begin{array}{rcl} I^\mathrm{\,cap}_\mathrm{P} & = & 2\pi\, r_\mathrm{P} h \ds\Big[r_\mathrm{P}\frac{dV_\mathrm{P}}{dt} \int_0^1\frac{(1-\lambda)^2 c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}} +r_\mathrm{D}\frac{dV_\mathrm{D}}{dt} \int_0^1 \frac{\lambda(1-\lambda)c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}}\Big],\\[12pt] -I^\mathrm{\,cap}_\mathrm{D} & = & 2\pi\, r_\mathrm{D} h \ds\Big[r_\mathrm{P}\frac{dV_\mathrm{P}}{dt}\int_0^1\, \frac{\lambda(1-\lambda)c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}}+r_\mathrm{D} \frac{dV_\mathrm{D}}{dt}\int_0^1\,\frac{\lambda^2 c_\mathrm{M}(\lambda)\,d\lambda} {(1-\lambda)\,r_\mathrm{P}+\lambda\,r_\mathrm{D}}\,\Big]\,. \end{array} \end{equation} For tapered segments ($r_\mathrm{P}\ne r_\mathrm{D}$) with membranes of non-uniform specific capacitance, the integrals in (\ref{dtc13}) have values \begin{equation}\label{dtc15} \begin{array}{rcl} I^\mathrm{\,cap}_\mathrm{P} & = & \ds 2\pi h \,r_\mathrm{P}\Big[c_\mathrm{P}\psi(r_\mathrm{P},r_\mathrm{D}) +c_\mathrm{D}\phi(r_\mathrm{P},r_\mathrm{D})\Big] \frac{dV_\mathrm{P}}{dt}\\[10pt] &&\qquad\ds+\;2\pi h\Big[c_\mathrm{P}r_\mathrm{D} \phi(r_\mathrm{P},r_\mathrm{D})+c_\mathrm{D}r_\mathrm{P} \phi(r_\mathrm{D},r_\mathrm{P})\Big]\frac{dV_\mathrm{D}}{dt}\,,\\[10pt] -I^\mathrm{\,cap}_\mathrm{D} & = & \ds 2\pi h \Big[c_\mathrm{P}r_\mathrm{D}\phi(r_\mathrm{P},r_\mathrm{D}) +c_\mathrm{D}r_\mathrm{P}\phi(r_\mathrm{D},r_\mathrm{P})\Big] \frac{dV_\mathrm{P}}{dt}\\[10pt] &&\qquad\ds+\;2\pi h r_\mathrm{D}\Big[c_\mathrm{P} \phi(r_\mathrm{D},r_\mathrm{P})+c_\mathrm{D}\psi(r_\mathrm{D}, r_\mathrm{P})\Big]\frac{dV_\mathrm{D}}{dt}\nonumber \end{array} \end{equation} where $c_\mathrm{M}(\lambda)=(1-\lambda)c_\mathrm{P}+\lambda\, c_\mathrm{D}$ and the auxiliary functions $\phi(x,y)$ and $\psi(x,y)$ are defined by \begin{equation}\label{dtc16} \begin{array}{rcl} \phi(x,y) & = & \ds\frac{x}{6(x-y)^3}\,\Big[x^2-5xy-2y^2 +\frac{6xy^2}{x-y}\,\log\frac{x}{y}\,\Big]\,,\\[10pt] \psi(x,y) & = & \ds\frac{x}{6(x-y)^3}\,\Big[2x^2-7xy+11y^2 -\frac{6y^3}{x-y}\log\frac{x}{y}\,\Big]\,. \end{array} \end{equation} The evaluation of the integrals in expression (\ref{dtc13}) is facilitated by defining the auxiliary integrals \[ \mathcal{K}_1= \int_0^1\frac{(1-\lambda)^2 \widehat{c}_\mathrm{M}(\lambda)\,d\lambda} {\widehat{r}(\lambda)}\,,\qquad \mathcal{K}_2=\int_0^1 \frac{\lambda(1-\lambda)\widehat{c}_\mathrm{M}(\lambda)\,d\lambda} {\widehat{r}(\lambda)}\,,\qquad \mathcal{K}_3=\int_0^1\,\frac{\lambda^2\widehat{c}_\mathrm{M}(\lambda)\,d\lambda} {\widehat{r}(\lambda)} \] and observing that $\mathcal{K}_1$, $\mathcal{K}_2$ and $\mathcal{K}_3$ can be determined easily from the identities \[ \begin{array}{rcl} \mathcal{K}_1+2\mathcal{K}_2+\mathcal{K}_3 & = & \ds \int_0^1\frac{\widehat{c}_\mathrm{M}(\lambda)\,d\lambda}{\widehat{r}(\lambda)}\,,\\[10pt] r_\mathrm{P}\,\mathcal{K}_1+r_\mathrm{D}\,\mathcal{K}_2 & = & \ds\int_0^1 (1-\lambda)\widehat{c}_\mathrm{M}(\lambda)\,d\lambda\,,\\[10pt] r_\mathrm{P}\,\mathcal{K}_2+r_\mathrm{D}\,\mathcal{K}_3 & = & \ds\int_0^1 \lambda\,\widehat{c}_\mathrm{M}(\lambda)\,d\lambda\,. \end{array} \] The results given in subsection \ref{CapCurrent} for a uniform segment ($r_\mathrm{P}=r_\mathrm{D}$) are obtained from formulae (\ref{dtc15}) by replacing $\phi(x,y)$ and $\psi(x,y)$ with their respective limiting values of $1/12$ and $1/4$ where each limit is taken as $x\to y$. \pagebreak[4] \textbf{Appendix 3 -- Partitioning of voltage-dependent current on tapered cylinders} The construction of $I^\mathrm{\,cap}_\mathrm{P}$ and $I^\mathrm{\,cap}_\mathrm{D}$ for a membrane with non-constant specific capacitance provides the framework for treating intrinsic voltage-dependent transmembrane current. For tapered segments with non-constant membrane conductance, the contributions to the perturbations in the axial current at the proximal and distal boundaries of the segment are identical to expressions (\ref{dtc15}) with $c_\mathrm{P}$ replaced by $g_\mathrm{P}(V_\mathrm{P};\bs{\theta})\,$ and $c_\mathrm{D}$ replaced by $g_\mathrm{D}(V_\mathrm{D};\bs{\theta})\,$. These contributions are \begin{equation}\label{dtc19} \begin{array}{rcl} I^\mathrm{\,IVDC}_\mathrm{P} & = & 2\pi h \,r_\mathrm{P}\Big[g_\mathrm{P}(V_\mathrm{P};\bs{\theta})\,\psi(r_\mathrm{P},r_\mathrm{D}) +g_\mathrm{D}(V_\mathrm{D};\bs{\theta})\,\phi(r_\mathrm{P},r_\mathrm{D})\Big] (V_\mathrm{P}-E)\\[5pt] &&\qquad+\;2\pi h\Big[g_\mathrm{P}(V_\mathrm{P};\bs{\theta})\,r_\mathrm{D} \phi(r_\mathrm{P},r_\mathrm{D})+g_\mathrm{D}(V_\mathrm{D};\bs{\theta})\,r_\mathrm{P} \phi(r_\mathrm{D},r_\mathrm{P})\Big](V_\mathrm{D}-E)\,,\\[10pt] -I^\mathrm{\,IVDC}_\mathrm{D} & = & 2\pi h \Big[g_\mathrm{P}(V_\mathrm{P};\bs{\theta})\,r_\mathrm{D}\phi(r_\mathrm{P},r_\mathrm{D}) +g_\mathrm{D}(V_\mathrm{D};\bs{\theta})\,r_\mathrm{P}\phi(r_\mathrm{D},r_\mathrm{P})\Big] (V_\mathrm{P}-E)\\[5pt] &&\qquad+\;2\pi h\,r_\mathrm{D}\Big[g_\mathrm{P}(V_\mathrm{P};\bs{\theta})\, \phi(r_\mathrm{D},r_\mathrm{P})+g_\mathrm{D}(V_\mathrm{D};\bs{\theta})\, \psi(r_\mathrm{D},r_\mathrm{P})\Big](V_\mathrm{D}-E) \end{array} \end{equation} where the auxiliary functions $\phi(x,y)$ and $\psi(x,y)$ are defined in (\ref{dtc16}). \textbf{Appendix 4 -- Analytical solution for somal potential of test neuron} It may be shown that $V(t)$, the deviation of the somal transmembrane potential from its resting value as a result of a distribution $\mathcal{I}(x,t)$ of current on a uniform cylindrical dendrite of radius $a$ and length $l$ attached to a soma is \begin{equation}\label{es4} V(t)=e^{-t/\tau}\,\Big[\,\phi_0(t)+\sum_\beta\;\phi_\beta(t) e^{-\beta^2 t/L^2\tau}\,\cos\beta\,\Big]\,, \qquad L=l\,\sqrt{\ds\frac{2 g_\mathrm{M}}{a g_\mathrm{A}}} \end{equation} where $\tau$ is the time constant of the somal and dendritic membranes and $g_\mathrm{M}$ and $g_\mathrm{A}$ have their usual meanings. The summation is taken over all the solutions $\beta$ of the transcendental equation $\tan\beta+\gamma\beta=0$ where $\gamma$ (constant) is the ratio of the total membrane area of the soma to the total membrane area of the dendrite. The functions $\phi_0(t)$ and $\phi_\beta(t)$ are solutions of the differential equations \begin{equation}\label{es9} \begin{array}{rcl} \ds\frac{d\phi_0}{dt} & = & -\ds\frac{e^{t/\tau}} {C_\mathrm{D}+C_\mathrm{S}}\,\Big[\, \mathcal{I}_\mathrm{S}(t)+\int_0^l\,\mathcal{I}(x,t)\,dx\,\Big]\,,\\[10pt] \ds\frac{d\phi_\beta}{dt} & = & -\ds\frac{2e^{(1+\beta^2/L^2)t/\tau}} {C_\mathrm{D} +C_\mathrm{S}\cos^2\beta}\,\Big[\, \int_0^1\,\mathcal{I}(x,t)\cos\beta\big(1-x/l\big)\,dx +\cos\beta\,\mathcal{I}_\mathrm{S}(t)\,\Big] \end{array} \end{equation} with initial conditions $\phi_0(0)=\phi_\beta(0)=0$, that is, the neuron is initialised at its resting potential. The parameters $C_\mathrm{S}$ and $C_\mathrm{D}$ denote respectively the total membrane capacitances of the soma and dendrite, and $\mathcal{I}_\mathrm{S}(t)$ is the current supplied to the soma. In the special case in which point currents $\mathcal{I}_1(t), \cdots,\mathcal{I}_n(t)$ act at distances $x_1,\cdots x_n$ from the soma of the uniform cylinder, the corresponding coefficient functions $\phi_0$ and $\phi_\beta$ satisfy \begin{equation}\label{ec2} \begin{array}{rcl} \ds\frac{d\phi_0}{dt} & = &\ds -\frac{e^{t/\tau}} {C_\mathrm{D}+C_\mathrm{S}}\,\Big[\, \mathcal{I}_\mathrm{S}(t)+\sum_{k=1}^n\;\mathcal{I}_k(t)\,\Big]\,,\\[10pt] \ds\frac{d\phi_\beta}{dt} & = & \ds-\frac{2e^{(1+\beta^2/L^2)t/\tau}} {C_\mathrm{D}+C_\mathrm{S}\cos^2\beta}\,\Big[\, \sum_{k=1}^n \;\mathcal{I}_k(t)\cos\beta\big(1-x_k/l\big) +\cos\beta\,\mathcal{I}_\mathrm{S}(t)\,\Big]\,. \end{array} \end{equation}