: Eight state kinetic sodium channel gating scheme
: Based on Schmidt-Hieber C, Bischofberger J. (2010) J Neurosci 30:10233-42
: Rates reflect fit of recordings from axon blebs in Schmidt-Hieber, 2010
: additional kinetic factor allows for modification of gating kinetics
: by JM Schulz, 2020
NEURON {
SUFFIX na8stX
USEION na READ ena WRITE ina
GLOBAL vShiftX, vShift_inactX, maxrateX
RANGE vShift_inact_local
RANGE g, gbar, kinfact
RANGE a1_0, a1_1, b1_0, b1_1, a2_0, a2_1
RANGE b2_0, b2_1, a3_0, a3_1, b3_0, b3_1
RANGE bh_0, bh_1, bh_2, ah_0, ah_1, ah_2
}
UNITS { (mV) = (millivolt) }
: initialize parameters
PARAMETER {
gbar = 33 (millimho/cm2)
a1_0 = 6.264774039489168e+01 (/ms)
a1_1 = 1.160554780103536e-02 (/mV)
b1_0 = 1.936911472259165e-03 (/ms)
b1_1 = 1.377185203515948e-01 (/mV)
a2_0 = 3.478282276988217e+01 (/ms)
a2_1 = 2.995594783341219e-02 (/mV)
b2_0 = 9.575149443481501e-02 (/ms)
b2_1 = 9.281138012170398e-02 (/mV)
a3_0 = 7.669829640279345e+01 (/ms)
a3_1 = 5.374324331056838e-02 (/mV)
b3_0 = 1.248791525464647e+00 (/ms)
b3_1 = 3.115037791363419e-02 (/mV)
bh_0 = 3.573645069880386e+00 (/ms) : bh_0 = 1.687524670388565e-02 (/ms) :
bh_1 = 1.933213300303968e-01
bh_2 = 7.496541077890667e-02 (/mV)
ah_0 = 6.882666625638676e+00 (/ms)
ah_1 = 4.654019001523467e+03
ah_2 = 2.958332680760088e-02 (/mV)
vShiftX = 12 (mV) : shift to the right to account for Donnan potentials
: 12 mV for cclamp, 0 for oo-patch vclamp simulations
vShift_inactX = 10 (mV) : global additional shift to the right for inactivation
: 10 mV for cclamp, 0 for oo-patch vclamp simulations
vShift_inact_local = 0 (mV) : additional shift to the right for inactivation, used as local range variable
maxrateX = 8.00e+03 (/ms) : limiting value for reaction rates
: See Patlak, 1991
kinfact = 1 : scales transition rates limiting value for reaction rates
}
ASSIGNED {
v (mV)
ena (mV)
g (millimho/cm2)
ina (milliamp/cm2)
a1 (/ms)
b1 (/ms)
a2 (/ms)
b2 (/ms)
a3 (/ms)
b3 (/ms)
ah (/ms)
bh (/ms)
}
STATE { c1 c2 c3 i1 i2 i3 i4 o }
BREAKPOINT {
SOLVE kin METHOD sparse
g = gbar*o
ina = g*(v - ena)*(1e-3)
}
INITIAL { SOLVE kin STEADYSTATE sparse }
KINETIC kin {
rates(v)
~ c1 <-> c2 (a1, b1)
~ c2 <-> c3 (a2, b2)
~ c3 <-> o (a3, b3)
~ i1 <-> i2 (a1, b1)
~ i2 <-> i3 (a2, b2)
~ i3 <-> i4 (a3, b3)
~ i1 <-> c1 (ah, bh)
~ i2 <-> c2 (ah, bh)
~ i3 <-> c3 (ah, bh)
~ i4 <-> o (ah, bh)
CONSERVE c1 + c2 + c3 + i1 + i2 + i3 + i4 + o = 1
}
: FUNCTION_TABLE tau1(v(mV)) (ms)
: FUNCTION_TABLE tau2(v(mV)) (ms)
PROCEDURE rates(v(millivolt)) {
LOCAL vS
vS = v-vShiftX
a1 = kinfact*a1_0*exp( a1_1*vS)
a1 = a1*maxrateX / (a1+maxrateX)
b1 = kinfact*b1_0*exp(-b1_1*vS)
b1 = b1*maxrateX / (b1+maxrateX)
a2 = kinfact*a2_0*exp( a2_1*vS)
a2 = a2*maxrateX / (a2+maxrateX)
b2 = kinfact*b2_0*exp(-b2_1*vS)
b2 = b2*maxrateX / (b2+maxrateX)
a3 = kinfact*a3_0*exp( a3_1*vS)
a3 = a3*maxrateX / (a3+maxrateX)
b3 = kinfact*b3_0*exp(-b3_1*vS)
b3 = b3*maxrateX / (b3+maxrateX)
bh = kinfact*bh_0/(1+bh_1*exp(-bh_2*(vS-vShift_inactX-vShift_inact_local)))
bh = bh*maxrateX / (bh+maxrateX)
ah = kinfact*ah_0/(1+ah_1*exp( ah_2*(vS-vShift_inactX-vShift_inact_local)))
ah = ah*maxrateX / (ah+maxrateX)
}