// This script is used to search the synaptic parameter space of the IS3 model by varying the number of excitatory and inhibitory synapses as well as their presynaptic spike rates
load_file("nrngui.hoc")
load_file("IS3_M2_Case9StarRevised.hoc") // Loads IS3 model with full morphology & properties (as well as parameters and point processes)
// Initialize theta synapses (precise number not needed so just 500 indices should be fine since this is more than the number of compartments in the model)
objectvar ExcThetaSRsyns[500], ExcThetaSLMsyns[500], BISThetaSRsyns[500], IS1ThetaSRsyns[500], OLMThetaSLMsyns[500], NGFThetaSLMsyns[500], IS2ThetaSLMsyns[500], ExcThetaSRsynsNCS[500], ExcThetaSLMsynsNCS[500], BISThetaSRsynsNCS[500], IS1ThetaSRsynsNCS[500], OLMThetaSLMsynsNCS[500], NGFThetaSLMsynsNCS[500], IS2ThetaSLMsynsNCS[500], ExcThetaSRsynsNSS[500], ExcThetaSLMsynsNSS[500], BISThetaSRsynsNSS[500], IS1ThetaSRsynsNSS[500], OLMThetaSLMsynsNSS[500], NGFThetaSLMsynsNSS[500], IS2ThetaSLMsynsNSS[500]
objectvar ExcSWRSRsyns[500], BISSWRSRsyns[500], IS1SWRSRsyns[500], OLMSWRSLMsyns[500]
objectvar ExcSWRSRsynsNCS[500], BISSWRSRsynsNCS[500], IS1SWRSRsynsNCS[500], OLMSWRSLMsynsNCS[500]
objectvar ExcSWRSRsynsNSS[500], BISSWRSRsynsNSS[500], IS1SWRSRsynsNSS[500], OLMSWRSLMsynsNSS[500]
SRexcsyncount = 0
SLMexcsyncount = 0
inhsyncount = 0
thetaSRcount = 0
thetaSLMcount = 0
SWRSRcount = 0
SWRSLMcount = 0
count = 0 // for indexing purposes to do with the input vectors
for (dendn = 0; dendn<=57; dendn = dendn+1){
print "Section Number: ", dendn_vec.x[dendn]
for (i = 1; i<=dend[dendn].nseg; i = i+1) {
if (dendn > 17 && dendn < 23) { // Skip putting synapses on axonal segments
count = count + 1
break
}
// Specifies proportion along section (i.e. from 0 to 1)
prop = ((dend[dendn].L/dend[dendn].nseg)*i - (dend[dendn].L/dend[dendn].nseg)/2)/dend[dendn].L // finds the center of each segment, as defined by its proportional distance along each section; (prop = (i-0.5)/dend[dendn].nseg also works)
// Assign optimized synapse parameter values to 9 excitatory synapses on the compartment if in SR
access dend[dendn]
if (distance(prop)<=300) {
for (l = 1; l<=9; l = l + 1){
SRexcsynapses[SRexcsyncount] = new Exp2Syn(prop)
dend[dendn] SRexcsynapses[SRexcsyncount].loc(prop) // assign to current compartment
SRexcsynapses[SRexcsyncount].tau1 = 2.9936e-04
SRexcsynapses[SRexcsyncount].tau2 = 2.4216
SRexcsynapses[SRexcsyncount].e = 0
SRexcnss[SRexcsyncount] = new VecStim(prop)
SRexcncs[SRexcsyncount] = new NetCon(SRexcnss[SRexcsyncount], SRexcsynapses[SRexcsyncount])
SRexcncs[SRexcsyncount].weight = 0.00000230814*distance(prop) + 0.00022016666
SRexcsyncount = SRexcsyncount + 1
}
// THETA SYNAPSES
ExcThetaSRsyns[thetaSRcount] = new Exp2Syn(prop)
dend[dendn] ExcThetaSRsyns[thetaSRcount].loc(prop)
ExcThetaSRsyns[thetaSRcount].tau1 = 2.9936e-04
ExcThetaSRsyns[thetaSRcount].tau2 = 2.4216
ExcThetaSRsyns[thetaSRcount].e = 0
ExcThetaSRsynsNSS[thetaSRcount] = new NetStim(prop)
ExcThetaSRsynsNCS[thetaSRcount] = new NetCon(ExcThetaSRsynsNSS[thetaSRcount], ExcThetaSRsyns[thetaSRcount])
ExcThetaSRsynsNCS[thetaSRcount].weight = 0.00000230814*distance(prop) + 0.00022016666
BISThetaSRsyns[thetaSRcount] = new Exp2Syn(prop)
dend[dendn] BISThetaSRsyns[thetaSRcount].loc(prop)
BISThetaSRsyns[thetaSRcount].tau1 = 0.1013
BISThetaSRsyns[thetaSRcount].tau2 = 4.8216
BISThetaSRsyns[thetaSRcount].e = -70
BISThetaSRsynsNSS[thetaSRcount] = new NetStim(prop)
BISThetaSRsynsNCS[thetaSRcount] = new NetCon(BISThetaSRsynsNSS[thetaSRcount], BISThetaSRsyns[thetaSRcount])
BISThetaSRsynsNCS[thetaSRcount].weight = 0.00000469125*distance(prop) + 0.0002695779
IS1ThetaSRsyns[thetaSRcount] = new Exp2Syn(prop)
dend[dendn] IS1ThetaSRsyns[thetaSRcount].loc(prop)
IS1ThetaSRsyns[thetaSRcount].tau1 = 0.1013
IS1ThetaSRsyns[thetaSRcount].tau2 = 4.8216
IS1ThetaSRsyns[thetaSRcount].e = -70
IS1ThetaSRsynsNSS[thetaSRcount] = new NetStim(prop)
IS1ThetaSRsynsNCS[thetaSRcount] = new NetCon(IS1ThetaSRsynsNSS[thetaSRcount], IS1ThetaSRsyns[thetaSRcount])
IS1ThetaSRsynsNCS[thetaSRcount].weight = 0.00000469125*distance(prop) + 0.0002695779
thetaSRcount = thetaSRcount + 1
// SWR SYNAPSES
ExcSWRSRsyns[SWRSRcount] = new Exp2Syn(prop)
dend[dendn] ExcSWRSRsyns[SWRSRcount].loc(prop)
ExcSWRSRsyns[SWRSRcount].tau1 = 2.9936e-04
ExcSWRSRsyns[SWRSRcount].tau2 = 2.4216
ExcSWRSRsyns[SWRSRcount].e = 0
ExcSWRSRsynsNSS[SWRSRcount] = new NetStim(prop)
ExcSWRSRsynsNCS[SWRSRcount] = new NetCon(ExcSWRSRsynsNSS[SWRSRcount], ExcSWRSRsyns[SWRSRcount])
ExcSWRSRsynsNCS[SWRSRcount].weight = 0.00000230814*distance(prop) + 0.00022016666
BISSWRSRsyns[SWRSRcount] = new Exp2Syn(prop)
dend[dendn] BISSWRSRsyns[SWRSRcount].loc(prop)
BISSWRSRsyns[SWRSRcount].tau1 = 0.1013
BISSWRSRsyns[SWRSRcount].tau2 = 4.8216
BISSWRSRsyns[SWRSRcount].e = -70
BISSWRSRsynsNSS[SWRSRcount] = new NetStim(prop)
BISSWRSRsynsNCS[SWRSRcount] = new NetCon(BISSWRSRsynsNSS[SWRSRcount], BISSWRSRsyns[SWRSRcount])
BISSWRSRsynsNCS[SWRSRcount].weight = 0.00000469125*distance(prop) + 0.0002695779
IS1SWRSRsyns[SWRSRcount] = new Exp2Syn(prop)
dend[dendn] IS1SWRSRsyns[SWRSRcount].loc(prop)
IS1SWRSRsyns[SWRSRcount].tau1 = 0.1013
IS1SWRSRsyns[SWRSRcount].tau2 = 4.8216
IS1SWRSRsyns[SWRSRcount].e = -70
IS1SWRSRsynsNSS[SWRSRcount] = new NetStim(prop)
IS1SWRSRsynsNCS[SWRSRcount] = new NetCon(IS1SWRSRsynsNSS[SWRSRcount], IS1SWRSRsyns[SWRSRcount])
IS1SWRSRsynsNCS[SWRSRcount].weight = 0.00000469125*distance(prop) + 0.0002695779
SWRSRcount = SWRSRcount + 1
}
// Assign optimized synapse parameter values to 9 excitatory synapses on the compartment if in SLM
if (distance(prop)>300) { // i.e. if greater than 300 um away from soma
for (l = 1; l<=9; l = l + 1){
SLMexcsynapses[SLMexcsyncount] = new Exp2Syn(prop)
dend[dendn] SLMexcsynapses[SLMexcsyncount].loc(prop) // assign to current compartment
SLMexcsynapses[SLMexcsyncount].tau1 = 6.1871e-04
SLMexcsynapses[SLMexcsyncount].tau2 = 3.1975
SLMexcsynapses[SLMexcsyncount].e = 0
SLMexcnss[SLMexcsyncount] = new VecStim(prop)
SLMexcncs[SLMexcsyncount] = new NetCon(SLMexcnss[SLMexcsyncount], SLMexcsynapses[SLMexcsyncount])
SLMexcncs[SLMexcsyncount].weight = 0.00000230814*distance(prop) + 0.00022016666
SLMexcsyncount = SLMexcsyncount + 1
}
// THETA SYNAPSES
ExcThetaSLMsyns[thetaSLMcount] = new Exp2Syn(prop)
dend[dendn] ExcThetaSLMsyns[thetaSLMcount].loc(prop)
ExcThetaSLMsyns[thetaSLMcount].tau1 = 6.1871e-04
ExcThetaSLMsyns[thetaSLMcount].tau2 = 3.1975
ExcThetaSLMsyns[thetaSLMcount].e = 0
ExcThetaSLMsynsNSS[thetaSLMcount] = new NetStim(prop)
ExcThetaSLMsynsNCS[thetaSLMcount] = new NetCon(ExcThetaSLMsynsNSS[thetaSLMcount], ExcThetaSLMsyns[thetaSLMcount])
ExcThetaSLMsynsNCS[thetaSLMcount].weight = 0.00000230814*distance(prop) + 0.00022016666
OLMThetaSLMsyns[thetaSLMcount] = new Exp2Syn(prop)
dend[dendn] OLMThetaSLMsyns[thetaSLMcount].loc(prop)
OLMThetaSLMsyns[thetaSLMcount].tau1 = 0.1013
OLMThetaSLMsyns[thetaSLMcount].tau2 = 4.8216
OLMThetaSLMsyns[thetaSLMcount].e = -70
OLMThetaSLMsynsNSS[thetaSLMcount] = new NetStim(prop)
OLMThetaSLMsynsNCS[thetaSLMcount] = new NetCon(OLMThetaSLMsynsNSS[thetaSLMcount], OLMThetaSLMsyns[thetaSLMcount])
OLMThetaSLMsynsNCS[thetaSLMcount].weight = 0.00000469125*distance(prop) + 0.0002695779
NGFThetaSLMsyns[thetaSLMcount] = new Exp2Syn(prop)
dend[dendn] NGFThetaSLMsyns[thetaSLMcount].loc(prop)
NGFThetaSLMsyns[thetaSLMcount].tau1 = 0.1013
NGFThetaSLMsyns[thetaSLMcount].tau2 = 4.8216
NGFThetaSLMsyns[thetaSLMcount].e = -70
NGFThetaSLMsynsNSS[thetaSLMcount] = new NetStim(prop)
NGFThetaSLMsynsNCS[thetaSLMcount] = new NetCon(NGFThetaSLMsynsNSS[thetaSLMcount], NGFThetaSLMsyns[thetaSLMcount])
NGFThetaSLMsynsNCS[thetaSLMcount].weight = 0.00000469125*distance(prop) + 0.0002695779
IS2ThetaSLMsyns[thetaSLMcount] = new Exp2Syn(prop)
dend[dendn] IS2ThetaSLMsyns[thetaSLMcount].loc(prop)
IS2ThetaSLMsyns[thetaSLMcount].tau1 = 0.1013
IS2ThetaSLMsyns[thetaSLMcount].tau2 = 4.8216
IS2ThetaSLMsyns[thetaSLMcount].e = -70
IS2ThetaSLMsynsNSS[thetaSLMcount] = new NetStim(prop)
IS2ThetaSLMsynsNCS[thetaSLMcount] = new NetCon(IS2ThetaSLMsynsNSS[thetaSLMcount], IS2ThetaSLMsyns[thetaSLMcount])
IS2ThetaSLMsynsNCS[thetaSLMcount].weight = 0.00000469125*distance(prop) + 0.0002695779
thetaSLMcount = thetaSLMcount + 1
// SWR SYNAPSES
OLMSWRSLMsyns[SWRSLMcount] = new Exp2Syn(prop)
dend[dendn] OLMSWRSLMsyns[SWRSLMcount].loc(prop)
OLMSWRSLMsyns[SWRSLMcount].tau1 = 0.1013
OLMSWRSLMsyns[SWRSLMcount].tau2 = 4.8216
OLMSWRSLMsyns[SWRSLMcount].e = -70
OLMSWRSLMsynsNSS[SWRSLMcount] = new NetStim(prop)
OLMSWRSLMsynsNCS[SWRSLMcount] = new NetCon(OLMSWRSLMsynsNSS[SWRSLMcount], OLMSWRSLMsyns[SWRSLMcount])
OLMSWRSLMsynsNCS[SWRSLMcount].weight = 0.00000469125*distance(prop) + 0.0002695779
SWRSLMcount = SWRSLMcount + 1
}
// Assign optimized synapse parameter values to 2 inhibitory synapses on the compartment
for (m = 1; m<=2; m = m + 1){
inhsynapses[inhsyncount] = new Exp2Syn(prop)
dend[dendn] inhsynapses[inhsyncount].loc(prop) // assign to current compartment
inhsynapses[inhsyncount].tau1 = 0.1013
inhsynapses[inhsyncount].tau2 = 4.8216
inhsynapses[inhsyncount].e = -70
inhnss[inhsyncount] = new VecStim(prop)
inhncs[inhsyncount] = new NetCon(inhnss[inhsyncount], inhsynapses[inhsyncount])
inhncs[inhsyncount].weight = 0.00000469125*distance(prop) + 0.0002695779
inhsyncount = inhsyncount + 1
}
count = count + 1
}
}
// Generate randomized indexing for random synapse selection
objref r, randSRexcindex, randSLMexcindex, randinhindex, EXCrandSRtheta, BISrandSRtheta, IS1randSRtheta, EXCrandSLMtheta, OLMrandSLMtheta, NGFrandSLMtheta, IS2randSLMtheta
objref EXCrandSRSWR, BISrandSRSWR, IS1randSRSWR, OLMrandSLMSWR
proc randomize_syns() {
r = new Random($1*10 + $2) // Ensures different random seeds for each example and example repeat
randSRexcindex = new Vector(nSRexcsyns)
randSLMexcindex = new Vector(nSLMexcsyns)
EXCrandSRtheta = new Vector(thetaSRcount)
BISrandSRtheta = new Vector(thetaSRcount)
IS1randSRtheta = new Vector(thetaSRcount)
EXCrandSLMtheta = new Vector(thetaSLMcount)
OLMrandSLMtheta = new Vector(thetaSLMcount)
NGFrandSLMtheta = new Vector(thetaSLMcount)
IS2randSLMtheta = new Vector(thetaSLMcount)
EXCrandSRSWR = new Vector(SWRSRcount)
BISrandSRSWR = new Vector(SWRSRcount)
IS1randSRSWR = new Vector(SWRSRcount)
OLMrandSLMSWR = new Vector(SWRSLMcount)
randinhindex = new Vector(ninhsyns)
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < nSRexcsyns; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, nSRexcsyns-1) // Generate random integer
for k=0,nSRexcsyns-1 repeats = repeats + (tempindex == randSRexcindex.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
randSRexcindex.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < nSLMexcsyns; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, nSLMexcsyns-1) // Generate random integer
for k=0,nSLMexcsyns-1 repeats = repeats + (tempindex == randSLMexcindex.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
randSLMexcindex.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < ninhsyns; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, ninhsyns-1) // Generate random integer
for k=0,ninhsyns-1 repeats = repeats + (tempindex == randinhindex.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
randinhindex.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
// Theta Randomizations
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < thetaSRcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, thetaSRcount-1) // Generate random integer
for k=0,thetaSRcount-1 repeats = repeats + (tempindex == EXCrandSRtheta.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
EXCrandSRtheta.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < thetaSRcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, thetaSRcount-1) // Generate random integer
for k=0,thetaSRcount-1 repeats = repeats + (tempindex == BISrandSRtheta.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
BISrandSRtheta.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < thetaSRcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, thetaSRcount-1) // Generate random integer
for k=0,thetaSRcount-1 repeats = repeats + (tempindex == IS1randSRtheta.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
IS1randSRtheta.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < thetaSLMcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer
for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == EXCrandSLMtheta.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
EXCrandSLMtheta.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < thetaSLMcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer
for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == OLMrandSLMtheta.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
OLMrandSLMtheta.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < thetaSLMcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer
for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == NGFrandSLMtheta.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
NGFrandSLMtheta.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < thetaSLMcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer
for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == IS2randSLMtheta.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
IS2randSLMtheta.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
// SWR Randomizations
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < SWRSRcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, SWRSRcount-1) // Generate random integer
for k=0,SWRSRcount-1 repeats = repeats + (tempindex == EXCrandSRSWR.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
EXCrandSRSWR.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < SWRSRcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, SWRSRcount-1) // Generate random integer
for k=0,SWRSRcount-1 repeats = repeats + (tempindex == BISrandSRSWR.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
BISrandSRSWR.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < SWRSRcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, SWRSRcount-1) // Generate random integer
for k=0,SWRSRcount-1 repeats = repeats + (tempindex == IS1randSRSWR.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
IS1randSRSWR.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
tempindex = 0
repeats = 1 // Initialize at 1 so it does skip the while loop
for (i = 0; i < SWRSLMcount; i = i + 1){
while (repeats > 0){
repeats = 0 // Reset the count of repeats to 0 for next iteration
tempindex = r.discunif(-1, SWRSLMcount-1) // Generate random integer
for k=0,SWRSLMcount-1 repeats = repeats + (tempindex == OLMrandSLMSWR.x[k]) // Check if value repeats (i.e. if repeats > 0)
}
OLMrandSLMSWR.x[i] = tempindex // Assign value if not repeated
repeats = 1 // Re-initialize to 1 so it doesn't skip while loop
}
}
access soma
// Create new synapses to generate theta-timed spiking
objectvar sw, apc, apctimes, rSRexc, rSRexcvec, rSLMexc, rSLMexcvec, rinh, rinhvec, frecSRExcPreSpikeTrains, frecSLMExcPreSpikeTrains, frecInhPreSpikeTrains, rSRexcMat, rSLMexcMat, rinhMat
access soma
distance()
// Record presynaptic theta spike times
objectvar ThetaSRexcprespiketrains[500], ThetaSLMexcprespiketrains[500], ThetaSRBISprespiketrains[500], ThetaSRIS1prespiketrains[500], ThetaSLMOLMprespiketrains[500], ThetaSLMNGFprespiketrains[500], ThetaSLMIS2prespiketrains[500], thetaMat, frecThetaSpikeTrains
objectvar SWRSRexcprespiketrains[500], SWRSRBISprespiketrains[500], SWRSRIS1prespiketrains[500], SWRSLMOLMprespiketrains[500]
objref spTheta, spHC, spSWR
spTheta = new Shape()
spTheta.show(0)
spSWR = new Shape()
spSWR.show(0)
spHC = new Shape()
spHC.show(0)
thetamultiplier = 0
SWRmultiplier = 0
proc f() {
spHC = new Shape()
spHC.show(0)
rSRexc = new Random($6*10+$7+28293) // Ensures different random seeds on each iteration
rSRexc.uniform(0,tstop)
rSLMexc = new Random($6*10+$7+51234)
rSLMexc.uniform(0,tstop)
rinh = new Random($6*10+$7+81221)
rinh.uniform(0,tstop)
inhsyncount = $1
excsyncount = $2
inhsynspikes = $3
excSRsynspikes = $4
excSLMsynspikes = $4
SaveExample = $5
nexccommon = 9
ninhcommon = 4
AddRhythm = $8
inhthetacount = $9
excthetacount = $10
EXCSLM = $11
EXCSR = $12
OLMSLM = $13
NGFSLM = $14
IS2SLM = $15
BISSR = $16
IS1SR = $17
SWREXCSR = $18
SWRBISSR = $19
SWRIS1SR = $20
SWROLMSLM = $21
excSWRcount = $22
inhSWRcount = $23
AddSWR = $24
// Re-initialize all inhibitory synapses such that they are silent when starting a new iteration
rinhvec = new Vector(0)
for i=0,ninhsyns-1 inhnss[randinhindex.x[i]].play(rinhvec)
// Re-initialize all excitatory synapses such that they are silent when starting a new iteration
rSRexcvec = new Vector(0)
for i=0,nSRexcsyns-1 SRexcnss[randSRexcindex.x[i]].play(rSRexcvec)
rSLMexcvec = new Vector(0)
for i=0,nSLMexcsyns-1 SLMexcnss[randSLMexcindex.x[i]].play(rSLMexcvec)
// Assign excitatory spike times
if (excSRsynspikes > 0 && excSLMsynspikes > 0) {
rSRexcMat = new Matrix(int((excsyncount)/2),excSRsynspikes)
rSLMexcMat = new Matrix(int((excsyncount)/2),excSLMsynspikes)
for (i=0; i < int((excsyncount)/2); i = i + 1){ // On each iteration add 1 SR and 1 SLM excitatory synapse
// Sample new spike times for common inputs
rSRexcvec = new Vector(excSRsynspikes)
rSRexcvec.setrand(rSRexc)
rSRexcvec.sort()
rSLMexcvec = new Vector(excSLMsynspikes)
rSLMexcvec.setrand(rSLMexc)
rSLMexcvec.sort()
xcom = 1
// Common input loop where synapses are given the same input until the maximum number of common inputs is passed
while (xcom <= nexccommon && i < int((excsyncount)/2) && i < nSLMexcsyns && i < nSRexcsyns) {
// Add SR excitatory inputs
SRexcnss[randSRexcindex.x[i]].play(rSRexcvec)
spHC.point_mark(SRexcsynapses[randSRexcindex.x[i]],3,"O",2)
for k=0,excSRsynspikes-1 rSRexcMat.x[i][k] = rSRexcvec.x[k]
// Add SLM excitatory inputs and if out of SLM synapses add SR inputs intead
SLMexcnss[randSLMexcindex.x[i]].play(rSLMexcvec)
spHC.point_mark(SLMexcsynapses[randSLMexcindex.x[i]],4,"O",2)
for k=0,excSLMsynspikes-1 rSLMexcMat.x[i][k] = rSLMexcvec.x[k]
i = i + 1 // update indexing
xcom = xcom + 1
}
i = i - 1 // i.e. so that i does not get updated twice resulting in skipped synapses
}
}
// Assign inhibitory spike times
if (inhsynspikes > 0){
rinhMat = new Matrix(inhsyncount,inhsynspikes)
for (i=0; i < inhsyncount; i = i + 1){
rinhvec = new Vector(inhsynspikes)
rinhvec.setrand(rinh)
rinhvec.sort()
xcom = 1
while (xcom <= ninhcommon && i < inhsyncount) {
inhnss[randinhindex.x[i]].play(rinhvec)
spHC.point_mark(inhsynapses[randinhindex.x[i]],2,"O",1.5)
// Build Spike Time Matrix
for k=0,inhsynspikes-1 rinhMat.x[i][k] = rinhvec.x[k]
i = i + 1
xcom = xcom + 1
}
i = i - 1 // i.e. so that i does not get updated twice resulting in skipped synapses
}
}
// Re-Initialize All Theta Inputs
for (p = 0; p < thetaSLMcount; p = p + 1){
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].interval = tstop
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].number = 0
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].start = tstop
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].noise = 0
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].interval = tstop
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].number = 0
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].start = tstop
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].noise = 0
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].interval = tstop
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].number = 0
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].start = tstop
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].noise = 0
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].interval = tstop
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].number = 0
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].start = tstop
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].noise = 0
}
for (p = 0; p < thetaSRcount; p = p + 1){
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].interval = tstop
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].number = 0
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].start = tstop
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].noise = 0
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].interval = tstop
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].number = 0
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].start = tstop
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].noise = 0
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].interval = tstop
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].number = 0
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].start = tstop
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].noise = 0
}
// Re-Initialize All SWR Inputs
for (p = 0; p < SWRSLMcount; p = p + 1){
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].interval = tstop
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].number = 0
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].start = tstop
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].noise = 0
}
for (p = 0; p < SWRSRcount; p = p + 1){
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].interval = tstop
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].number = 0
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].start = tstop
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].noise = 0
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].interval = tstop
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].number = 0
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].start = tstop
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].noise = 0
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].interval = tstop
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].number = 0
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].start = tstop
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].noise = 0
}
// Feed theta inputs to desired areas
for (p = 0; p < excthetacount*AddRhythm; p = p + 1){
if (EXCSLM == 1){
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse)
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].start = 0
ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].noise = 0
spTheta.point_mark(ExcThetaSLMsyns[EXCrandSLMtheta.x[p]],4,"O",2)
ThetaSLMexcprespiketrains[EXCrandSLMtheta.x[p]] = new Vector()
ExcThetaSLMsynsNCS[EXCrandSLMtheta.x[p]].record(ThetaSLMexcprespiketrains[EXCrandSLMtheta.x[p]])
}
if (EXCSR == 1){
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse)
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].start = 31.25
ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].noise = 0
spTheta.point_mark(ExcThetaSRsyns[EXCrandSRtheta.x[p]],3,"O",2)
ThetaSRexcprespiketrains[EXCrandSRtheta.x[p]] = new Vector()
ExcThetaSRsynsNCS[EXCrandSRtheta.x[p]].record(ThetaSRexcprespiketrains[EXCrandSRtheta.x[p]])
}
}
for (p = 0; p < inhthetacount*AddRhythm; p = p + 1){
if (OLMSLM == 1){
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse)
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].start = 93.75
OLMThetaSLMsynsNSS[OLMrandSLMtheta.x[p]].noise = 0
spTheta.point_mark(OLMThetaSLMsyns[OLMrandSLMtheta.x[p]],1,"O",1.5)
ThetaSLMOLMprespiketrains[OLMrandSLMtheta.x[p]] = new Vector()
OLMThetaSLMsynsNCS[OLMrandSLMtheta.x[p]].record(ThetaSLMOLMprespiketrains[OLMrandSLMtheta.x[p]])
}
if (NGFSLM == 1){
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse)
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].start = 31.25
NGFThetaSLMsynsNSS[NGFrandSLMtheta.x[p]].noise = 0
spTheta.point_mark(NGFThetaSLMsyns[NGFrandSLMtheta.x[p]],2,"O",1.5)
ThetaSLMNGFprespiketrains[NGFrandSLMtheta.x[p]] = new Vector()
NGFThetaSLMsynsNCS[NGFrandSLMtheta.x[p]].record(ThetaSLMNGFprespiketrains[NGFrandSLMtheta.x[p]])
}
if (IS2SLM == 1){
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse)
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].start = 31.25
IS2ThetaSLMsynsNSS[IS2randSLMtheta.x[p]].noise = 0
spTheta.point_mark(IS2ThetaSLMsyns[IS2randSLMtheta.x[p]],5,"O",1.5)
ThetaSLMIS2prespiketrains[IS2randSLMtheta.x[p]] = new Vector()
IS2ThetaSLMsynsNCS[IS2randSLMtheta.x[p]].record(ThetaSLMIS2prespiketrains[IS2randSLMtheta.x[p]])
}
if (BISSR == 1){
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse)
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].start = 93.75
BISThetaSRsynsNSS[BISrandSRtheta.x[p]].noise = 0
spTheta.point_mark(BISThetaSRsyns[BISrandSRtheta.x[p]],6,"O",1.5)
ThetaSRBISprespiketrains[BISrandSRtheta.x[p]] = new Vector()
BISThetaSRsynsNCS[BISrandSRtheta.x[p]].record(ThetaSRBISprespiketrains[BISrandSRtheta.x[p]])
}
if (IS1SR == 1){
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse)
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].start = 62.5
IS1ThetaSRsynsNSS[IS1randSRtheta.x[p]].noise = 0
spTheta.point_mark(IS1ThetaSRsyns[IS1randSRtheta.x[p]],7,"O",1.5)
ThetaSRIS1prespiketrains[IS1randSRtheta.x[p]] = new Vector()
IS1ThetaSRsynsNCS[IS1randSRtheta.x[p]].record(ThetaSRIS1prespiketrains[IS1randSRtheta.x[p]])
}
}
// Feed SWR inputs to desired areas
for (p = 0; p < excSWRcount*AddSWR; p = p + 1){
if (SWREXCSR == 1){
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].interval = 10 // i.e. Higher end of spike frequencies seen in CA3 pyramidal neurons according to Frerking et al, 2005
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].number = 5 // dictates the length of the SWR which is somewhere around ~50ms long (Katona et al, 2014; Varga et al, 2014)
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].start = 9000
ExcSWRSRsynsNSS[EXCrandSRSWR.x[p]].noise = 0
spSWR.point_mark(ExcSWRSRsyns[EXCrandSRSWR.x[p]],4,"O",2)
SWRSRexcprespiketrains[EXCrandSRSWR.x[p]] = new Vector()
ExcSWRSRsynsNCS[EXCrandSRSWR.x[p]].record(SWRSRexcprespiketrains[EXCrandSRSWR.x[p]])
}
}
for (p = 0; p < inhSWRcount*AddSWR; p = p + 1){
if (SWROLMSLM == 1){
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].interval = 50 // i.e. ~20 Hz (Katona et al, 2014)
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].number = 2 // i.e. ~50 ms
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].start = 9006.5 // CA3-CA1-OLM-IS3; also assuming 6.5 ms delay based on Pangalos et al, 2013
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].noise = 0
spSWR.point_mark(OLMSWRSLMsyns[OLMrandSLMSWR.x[p]],7,"O",1.5)
SWRSLMOLMprespiketrains[OLMrandSLMSWR.x[p]] = new Vector()
OLMSWRSLMsynsNCS[OLMrandSLMSWR.x[p]].record(SWRSLMOLMprespiketrains[OLMrandSLMSWR.x[p]])
}
if (SWRBISSR == 1){
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].interval = 8.33 // i.e. ~120 Hz (Katona et al, 2014)
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].number = 6 // i.e. ~50 ms
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].start = 9003.25 // CA3-BIS-IS3
BISSWRSRsynsNSS[BISrandSRSWR.x[p]].noise = 0
spSWR.point_mark(BISSWRSRsyns[BISrandSRSWR.x[p]],5,"O",1.5)
SWRSRBISprespiketrains[BISrandSRSWR.x[p]] = new Vector()
BISSWRSRsynsNCS[BISrandSRSWR.x[p]].record(SWRSRBISprespiketrains[BISrandSRSWR.x[p]])
}
if (SWRIS1SR == 1){
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].interval = 8.33 // i.e. ~120 Hz if assuming similar to bistratified or basket cells
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].number = 6 // ~50 ms
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].start = 9003.25 // CA3-IS1-IS3
IS1SWRSRsynsNSS[IS1randSRSWR.x[p]].noise = 0
spSWR.point_mark(IS1SWRSRsyns[IS1randSRSWR.x[p]],5,"O",1.5)
SWRSRIS1prespiketrains[IS1randSRSWR.x[p]] = new Vector()
IS1SWRSRsynsNCS[IS1randSRSWR.x[p]].record(SWRSRIS1prespiketrains[IS1randSRSWR.x[p]])
}
}
if (SWROLMSLM == 2){
for (p = 0; p < inhSWRcount*2; p = p + 1){
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].interval = 50 // i.e. ~20 Hz (Katona et al, 2014)
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].number = 2 // i.e. ~50 ms
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].start = 9006.5 // CA3-CA1-OLM-IS3; also assuming 6.5 ms delay based on Pangalos et al, 2013
OLMSWRSLMsynsNSS[OLMrandSLMSWR.x[p]].noise = 0
spSWR.point_mark(OLMSWRSLMsyns[OLMrandSLMSWR.x[p]],7,"O",1.5)
SWRSLMOLMprespiketrains[OLMrandSLMSWR.x[p]] = new Vector()
OLMSWRSLMsynsNCS[OLMrandSLMSWR.x[p]].record(SWRSLMOLMprespiketrains[OLMrandSLMSWR.x[p]])
}
}
if (SaveExample==1){
if (AddRhythm == 1 || AddSWR == 1){ // Change later when adding more synapses
// Save Excitatory Raster Matrices
sprint(filename4,"SRExcPreSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8)
frecSRExcPreSpikeTrains = new File(filename4)
frecSRExcPreSpikeTrains.wopen(filename4)
if (excSRsynspikes > 0) {
rSRexcMat.fprint(frecSRExcPreSpikeTrains,"%f\t") // Spike times sampled from random distribution
}
frecSRExcPreSpikeTrains.close()
sprint(filename7,"SLMExcPreSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8)
frecSLMExcPreSpikeTrains = new File(filename7)
frecSLMExcPreSpikeTrains.wopen(filename7)
if (excSLMsynspikes > 0) {
rSLMexcMat.fprint(frecSLMExcPreSpikeTrains,"%f\t") // Spike times sampled from random distribution
}
frecSLMExcPreSpikeTrains.close()
// Save Inhibitory Raster Matrix
sprint(filename5,"InhPreSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8)
frecInhPreSpikeTrains = new File(filename5)
frecInhPreSpikeTrains.wopen(filename5)
if (inhsynspikes > 0){
rinhMat.fprint(frecInhPreSpikeTrains,"%f\t") // Spike times sampled from random distribution
}
frecInhPreSpikeTrains.close()
sprint(filename3,"HCSynLocationsShapePlot_1_HCNumber.ps")
spHC.printfile(filename3)
spHC.point_mark_remove()
sprint(filename6,"ThetaSynLocationsShapePlot_X%g_ThetaMultiplier.ps",thetamultiplier)
spTheta.printfile(filename6)
spTheta.point_mark_remove()
thetamultiplier = thetamultiplier + 1
sprint(filename8,"SWRSynLocationsShapePlot_X%g_ThetaMultiplier.ps",SWRmultiplier)
spSWR.printfile(filename8)
spSWR.point_mark_remove()
SWRmultiplier = SWRmultiplier + 1
}
apc = new APCount(0.5)
apctimes = new Vector()
apc.thresh = -20
apc.record(apctimes)
// Run Simulation and Record Vm Vector
recV = new Vector()
recV.record(&soma.v(0.5))
rs = new RandomStream(1) // Use same random seed for each run
soma noise = new InGauss(0)
noise.del = 0
noise.dur = tstop
noise.mean = 0
noise.stdev = 0.01
noise.noiseFromRandom(rs.r)
rs.r.normal(0,1)
rs.start
run()
sprint(filename1,"model_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_SWRMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,SWRmultiplier)
frecV = new File(filename1)
frecV.wopen(filename1)
recV.vwrite(frecV) // Use printf instead of vwrite if you want a text file instead of a binary file
frecV.close()
// if (AddRhythm == 1){
// numindices = excthetacount*(EXCSLM+EXCSR) + inhthetacount*(OLMSLM+NGFSLM+IS2SLM+BISSR+IS1SR)
// // Build Theta Spike Matrix
// numSpikes = 8*tstop/1000
// thetaMat = new Matrix(numindices,numSpikes)
// for (x = 0; x < excthetacount*EXCSLM; x = x + 1){
// for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMexcprespiketrains[EXCrandSLMtheta.x[x]].x[y]
// }
// for (x = excthetacount*EXCSLM; x < excthetacount*EXCSLM + excthetacount*EXCSR; x = x + 1){
// for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSRexcprespiketrains[EXCrandSRtheta.x[x-(excthetacount*EXCSLM)]].x[y]
// }
// for (x = excthetacount*EXCSLM + excthetacount*EXCSR; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM; x = x + 1){
// for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMOLMprespiketrains[OLMrandSLMtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR)]].x[y]
// }
// for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM; x = x + 1){
// for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMNGFprespiketrains[NGFrandSLMtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM)]].x[y]
// }
// for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM; x = x + 1){
// for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMIS2prespiketrains[IS2randSLMtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM)]].x[y]
// }
// for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR; x = x + 1){
// for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSRBISprespiketrains[BISrandSRtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM)]].x[y]
// }
// for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR + inhthetacount*IS1SR; x = x + 1){
// for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSRIS1prespiketrains[IS1randSRtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR)]].x[y]
// }
// //Save Theta Spike Matrix
// sprint(filename2,"ThetaSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8)
// frecThetaSpikeTrains = new File(filename2)
// frecThetaSpikeTrains.wopen(filename2)
// thetaMat.fprint(frecThetaSpikeTrains,"%f\t") // Spike times sampled from random distribution
// frecThetaSpikeTrains.close()
// }
}else{
// Run Simulation and Record Vm Vector
recV = new Vector()
recV.record(&soma.v(0.5))
rs = new RandomStream(1) // Use same random seed for each run
soma noise = new InGauss(0)
noise.del = 0
noise.dur = tstop
noise.mean = 0
noise.stdev = 0.01
noise.noiseFromRandom(rs.r)
rs.r.normal(0,1)
rs.start
run()
}
}