/***************************************************************************
* RK2_GPU2.h *
* ------------------- *
* copyright : (C) 2012 by Francisco Naveros *
* email : fnaveros@atc.ugr.es *
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#ifndef RK2_GPU2_H_
#define RK2_GPU2_H_
/*!
* \file RK2_GPU2.h
*
* \author Francisco Naveros
* \date May 2013
*
* This file declares a class which implement a second order Runge-Kutta integration method in GPU (this class is stored
* in GPU memory and executed in GPU. All integration methods in GPU are fixed step due to the parallel
* architecture of this one.
*/
#include "./IntegrationMethod_GPU2.h"
#include "../../include/neuron_model/TimeDrivenNeuronModel_GPU2.h"
//Library for CUDA
#include <helper_cuda.h>
/*!
* \class RK2_GPU2
*
* \brief Second order Runge-Kutta integration method in GPU.
*
* This class abstracts the behavior of a Euler integration method for neurons in a
* time-driven spiking neural network.
* It includes internal model functions which define the behavior of integration methods
* (initialization, calculate next value, ...).
*
* \author Francisco Naveros
* \date May 2012
*/
class RK2_GPU2 : public IntegrationMethod_GPU2 {
public:
/*!
* \brief These vectors are used as auxiliar vectors.
*/
float * AuxNeuronState;
float * AuxNeuronState1;
float * AuxNeuronState2;
/*!
* \brief Constructor of the class with 5 parameter.
*
* It generates a new second order Runge-Kutta object in GPU memory.
*
* \param N_neuronStateVariables Number of state variables for each cell.
* \param N_differentialNeuronState Number of state variables witch are calculate with a differential equation for each cell.
* \param N_timeDependentNeuronState Number of state variables witch ara calculate with a time dependent equation for each cell.
* \param Total_N_thread Number of thread in GPU (in this method it is not necessary)
* \param Buffer_GPU This vector contains all the necesary GPU memory witch have been reserved in the CPU (this memory
* could be reserved directly in the GPU, but this suppose some restriction in the amount of memory witch can be reserved).
*/
__device__ RK2_GPU2(TimeDrivenNeuronModel_GPU2* NewModel, int N_neuronStateVariables, int N_differentialNeuronState, int N_timeDependentNeuronState, void ** Buffer_GPU):IntegrationMethod_GPU2(NewModel, N_neuronStateVariables, N_differentialNeuronState, N_timeDependentNeuronState){
AuxNeuronState=((float*)Buffer_GPU[0]);
AuxNeuronState1=((float*)Buffer_GPU[1]);
AuxNeuronState2=((float*)Buffer_GPU[2]);
}
/*!
* \brief Class destructor.
*
* It destroys an object of this class.
*/
__device__ ~RK2_GPU2(){
}
/*!
* \brief It calculate the next neural state varaibles of the model.
*
* It calculate the next neural state varaibles of the model.
*
* \param index Index of the cell inside the neuron model for method with memory (e.g. BDF).
* \param SizeStates Number of neurons
* \param Model The NeuronModel.
* \param NeuronState Vector of neuron state variables for all neurons.
* \param elapsed_time integration time step.
*/
__device__ void NextDifferentialEcuationValue(int index, int SizeStates, float * NeuronState, float elapsed_time){
int offset1=gridDim.x * blockDim.x;
int offset2=blockDim.x*blockIdx.x + threadIdx.x;
//1st term
model->EvaluateDifferentialEcuation(index, SizeStates, NeuronState, AuxNeuronState1);
//2nd term
for (int j=0; j<N_DifferentialNeuronState; j++){
AuxNeuronState[j*offset1 + offset2]= NeuronState[j*SizeStates + index] + AuxNeuronState1[j*offset1 + offset2]*elapsed_time;
}
for (int j=N_DifferentialNeuronState; j<N_NeuronStateVariables; j++){
AuxNeuronState[j*offset1 + offset2]=NeuronState[j*SizeStates + index];
}
model->EvaluateTimeDependentEcuation(offset2, offset1, AuxNeuronState, elapsed_time);
model->EvaluateDifferentialEcuation(offset2, offset1, AuxNeuronState, AuxNeuronState2);
for (int j=0; j<N_DifferentialNeuronState; j++){
NeuronState[j*SizeStates + index]+=(AuxNeuronState1[j*offset1 + offset2]+AuxNeuronState2[j*offset1 + offset2])*elapsed_time*0.5f;
}
//Finaly, we evaluate the neural state variables with time dependence.
//Model->EvaluateTimeDependentEcuation(index, SizeStates, NeuronState, elapsed_time);
for (int j=N_DifferentialNeuronState; j<N_NeuronStateVariables; j++){
NeuronState[j*SizeStates + index]=AuxNeuronState[j*offset1 + offset2];
}
}
/*!
* \brief It reset the state of the integration method for method with memory (e.g. BDF).
*
* It reset the state of the integration method for method with memory (e.g. BDF).
*
* \param index indicate witch neuron must be reseted.
*
*/
__device__ void resetState(int index){
}
};
#endif /* RK2_GPU2_H_ */