/******************************************************************************
* MatrixOperations.c *
* ------------------ *
* copyright : (C) 2013 by Richard R. Carrillo and Niceto R. Luque *
* and Peter I. Corke *
* email : rcarrillo,nluque at ugr.es *
******************************************************************************/
/***************************************************************************
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
***************************************************************************/
/*!
* \brief Simple vector/matrix maths library.
*
* \note All vectors and matrices are passed by reference.
*
*/
#include <mex.h>
#include "../../include/arm_robot_simulator/MatrixOperations.h"
/**
* Vector cross product.
*
* @param r Return vector.
* @param a Vector.
* @param b Vector.
*/
void
vect_cross (Vect *r, Vect *a, Vect *b)
{
r->x = a->y*b->z - a->z*b->y;
r->y = a->z*b->x - a->x*b->z;
r->z = a->x*b->y - a->y*b->x;
}
/**
* Vector cross product.
*
* @param a Vector.
* @param b Vector.
* @return Dot (inner) product.
*/
double
vect_dot (Vect *a, Vect *b)
{
return a->x * b->x + a->y * b->y + a->z * b->z;
}
/**
* Vector sum.
*
* @param r Return sum vector.
* @param a Vector.
* @param b Vector.
*
* @note Elementwise addition of two vectors.
*/
void
vect_add (Vect *r, Vect *a, Vect *b)
{
r->x = a->x + b->x;
r->y = a->y + b->y;
r->z = a->z + b->z;
}
/**
* Vector scalar product.
*
* @param r Return scaled vector.
* @param a Vector.
* @param s Scalar.
*
* @note Elementwise scaling of vector.
*/
void
scal_mult (Vect *r, Vect *a, double s)
{
r->x = s*a->x;
r->y = s*a->y;
r->z = s*a->z;
}
/**
* Matrix vector product.
*
* @param r Return rotated vector.
* @param m 3x3 rotation matrix.
* @param v Vector.
*/
void
rot_vect_mult (Vect *r, Rot *m, Vect *v)
{
r->x = m->n.x*v->x + m->o.x*v->y + m->a.x*v->z;
r->y = m->n.y*v->x + m->o.y*v->y + m->a.y*v->z;
r->z = m->n.z*v->x + m->o.z*v->y + m->a.z*v->z;
}
/**
* Matrix transpose vector product.
*
* @param r Return rotated vector.
* @param m 3x3 rotation matrix.
* @param v Vector.
*
* @note Multiplies \p v by transpose of \p m.
*/
void
rot_trans_vect_mult (Vect *r, Rot *m, Vect *v)
{
r->x = m->n.x*v->x + m->n.y*v->y + m->n.z*v->z;
r->y = m->o.x*v->x + m->o.y*v->y + m->o.z*v->z;
r->z = m->a.x*v->x + m->a.y*v->y + m->a.z*v->z;
}
/**
* General matrix vector product.
*
* @param r Return vector.
* @param m 3x3 matrix.
* @param v Vector.
*
* @note Assumes matrix is organized in column major order.
*/
void
mat_vect_mult (Vect *r, double *m, Vect *v)
{
r->x = m[0]*v->x + m[3]*v->y + m[6]*v->z;
r->y = m[1]*v->x + m[4]*v->y + m[7]*v->z;
r->z = m[2]*v->x + m[5]*v->y + m[8]*v->z;
}
/**
* Print vector.
*
* @param s Identification string, printed first.
* @param v Vector
*
* Vector is printed on a single line, preceded by the string \p s.
*/
void
vect_print(char *s, Vect *v)
{
mexPrintf("%10s: ", s);
mexPrintf("%15.3f", v->x);
mexPrintf("%15.3f", v->y);
mexPrintf("%15.3f\n", v->z);
}
/**
* Print matrix.
*
* @param s Identification string, printed first.
* @param m Rotation matrix.
*
* Vector is printed on a single line, preceded by the string \p s.
*/
void
rot_print(char *s, Rot *m)
{
mexPrintf("%s:\n", s);
mexPrintf(" %15.3f%15.3f%15.3f\n", m->n.x, m->o.x, m->a.x);
mexPrintf(" %15.3f%15.3f%15.3f\n", m->n.y, m->o.y, m->a.y);
mexPrintf(" %15.3f%15.3f%15.3f\n", m->n.z, m->o.z, m->a.z);
}