TITLE I-h channel from Harnett 2015 - J Neurosci
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
celsius (degC)
erev = -30 (mV)
gbar = 0.0001 (mho/cm2)
vhalf = -100.6 (mV)
k = 6.4
bA = 9.63 : for activation tau - (note - only 1 tau)
bD = 1.30 : for deactivation tau
mA = 0.0458 : for activation tau
mD = -0.0447 : for deactivation tau
q10 = 2.2
taumin = 2.0 (ms) : minimal value of time constant
}
NEURON {
SUFFIX h15
NONSPECIFIC_CURRENT i
RANGE gbar, minf, tau, g, m
GLOBAL taumin, k, bA, bD, mA, mD, vhalf
}
STATE {
m
}
ASSIGNED {
i (mA/cm2)
minf
tau
g
}
INITIAL {
rate(v)
m = minf
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar*m
i = g*(v-erev)
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rate(v)
m' = (minf - m) / tau
}
PROCEDURE rate(v (mV)) { :callable from hoc - leads to segfault in python
LOCAL qt
qt = q10^((celsius-26.0)/10.0)
if(v <= -92.0046199111992) {
tau = exp(bA + mA * v) / qt
} else {
tau = exp(bD + mD * v) / qt
}
if(tau < taumin) { tau = taumin }
minf = 1.0/(1.0 + exp((v-vhalf)/k))
}