/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__MyExp2SynNMDABB
#define _nrn_initial _nrn_initial__MyExp2SynNMDABB
#define nrn_cur _nrn_cur__MyExp2SynNMDABB
#define _nrn_current _nrn_current__MyExp2SynNMDABB
#define nrn_jacob _nrn_jacob__MyExp2SynNMDABB
#define nrn_state _nrn_state__MyExp2SynNMDABB
#define _net_receive _net_receive__MyExp2SynNMDABB
#define state state__MyExp2SynNMDABB
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define tau1NMDA _p[0]
#define tau2NMDA _p[1]
#define e _p[2]
#define r _p[3]
#define smax _p[4]
#define sNMDAmax _p[5]
#define Vwt _p[6]
#define iNMDA _p[7]
#define sNMDA _p[8]
#define ica _p[9]
#define g _p[10]
#define A2 _p[11]
#define B2 _p[12]
#define mgblock _p[13]
#define factor2 _p[14]
#define cai _p[15]
#define cao _p[16]
#define DA2 _p[17]
#define DB2 _p[18]
#define v _p[19]
#define _g _p[20]
#define _tsav _p[21]
#define _nd_area *_ppvar[0]._pval
#define _ion_cai *_ppvar[2]._pval
#define _ion_cao *_ppvar[3]._pval
#define _ion_ica *_ppvar[4]._pval
#define _ion_dicadv *_ppvar[5]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static double _hoc_ghk();
static double _hoc_ghkg();
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
"ghk", _hoc_ghk,
"ghkg", _hoc_ghkg,
0, 0
};
#define ghk ghk_MyExp2SynNMDABB
#define ghkg ghkg_MyExp2SynNMDABB
extern double ghk( _threadargsprotocomma_ double , double , double , double );
extern double ghkg( _threadargsprotocomma_ double , double , double , double );
/* declare global and static user variables */
#define fracca fracca_MyExp2SynNMDABB
double fracca = 0.13;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"tau1NMDA", "ms",
"tau2NMDA", "ms",
"e", "mV",
"smax", "1",
"sNMDAmax", "1",
"A2", "1",
"B2", "1",
"iNMDA", "nA",
"sNMDA", "1",
"ica", "nA",
"g", "umho",
0,0
};
static double A20 = 0;
static double B20 = 0;
static double delta_t = 0.01;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"fracca_MyExp2SynNMDABB", &fracca_MyExp2SynNMDABB,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[6]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"MyExp2SynNMDABB",
"tau1NMDA",
"tau2NMDA",
"e",
"r",
"smax",
"sNMDAmax",
"Vwt",
0,
"iNMDA",
"sNMDA",
"ica",
"g",
0,
"A2",
"B2",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 22, _prop);
/*initialize range parameters*/
tau1NMDA = 15;
tau2NMDA = 150;
e = 0;
r = 1;
smax = 1e+09;
sNMDAmax = 1e+09;
Vwt = 0;
}
_prop->param = _p;
_prop->param_size = 22;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 7, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[2]._pval = &prop_ion->param[1]; /* cai */
_ppvar[3]._pval = &prop_ion->param[2]; /* cao */
_ppvar[4]._pval = &prop_ion->param[3]; /* ica */
_ppvar[5]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _net_receive(Point_process*, double*, double);
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _MyExp2SynNMDABB_reg() {
int _vectorized = 1;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 1,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 22, 7);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 5, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 6, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
pnt_receive[_mechtype] = _net_receive;
pnt_receive_size[_mechtype] = 1;
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 MyExp2SynNMDABB /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/MyExp2SynNMDABB.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
#define FARADAY _nrnunit_FARADAY[_nrnunit_use_legacy_]
static double _nrnunit_FARADAY[2] = {0x1.78e555060882cp+16, 96485.3}; /* 96485.3321233100141 */
#define R _nrnunit_R[_nrnunit_use_legacy_]
static double _nrnunit_R[2] = {0x1.0a1013e8990bep+3, 8.3145}; /* 8.3144626181532395 */
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int state(_threadargsproto_);
double ghkg ( _threadargsprotocomma_ double _lv , double _lci , double _lco , double _lz ) {
double _lghkg;
double _lxi , _lf , _lexi , _lfxi ;
_lf = R * ( celsius + 273.15 ) / ( _lz * ( 1e-3 ) * FARADAY ) ;
_lxi = _lv / _lf ;
_lexi = exp ( _lxi ) ;
if ( fabs ( _lxi ) < 1e-4 ) {
_lfxi = 1.0 - _lxi / 2.0 ;
}
else {
_lfxi = _lxi / ( _lexi - 1.0 ) ;
}
_lghkg = _lf * ( ( _lci / _lco ) * _lexi - 1.0 ) * _lfxi ;
return _lghkg;
}
static double _hoc_ghkg(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = ghkg ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) );
return(_r);
}
double ghk ( _threadargsprotocomma_ double _lv , double _lci , double _lco , double _lz ) {
double _lghk;
double _lxi , _lf , _lexi , _lfxi ;
_lf = R * ( celsius + 273.15 ) / ( _lz * ( 1e-3 ) * FARADAY ) ;
_lxi = _lv / _lf ;
_lexi = exp ( _lxi ) ;
if ( fabs ( _lxi ) < 1e-4 ) {
_lfxi = 1.0 - _lxi / 2.0 ;
}
else {
_lfxi = _lxi / ( _lexi - 1.0 ) ;
}
_lghk = ( .001 ) * _lz * FARADAY * ( _lci * _lexi - _lco ) * _lfxi ;
return _lghk;
}
static double _hoc_ghk(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = ghk ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) );
return(_r);
}
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
DA2 = - A2 / tau1NMDA ;
DB2 = - B2 / tau2NMDA ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
DA2 = DA2 / (1. - dt*( ( - 1.0 ) / tau1NMDA )) ;
DB2 = DB2 / (1. - dt*( ( - 1.0 ) / tau2NMDA )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
A2 = A2 + (1. - exp(dt*(( - 1.0 ) / tau1NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau1NMDA ) - A2) ;
B2 = B2 + (1. - exp(dt*(( - 1.0 ) / tau2NMDA)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau2NMDA ) - B2) ;
}
return 0;
}
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag;
{ double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt; _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
_tsav = t; {
double _lww ;
_lww = _args[0] ;
if ( r >= 0.0 ) {
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = A2;
double __primary = (A2 + factor2 * _lww * r) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau1NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau1NMDA ) - __primary );
A2 += __primary;
} else {
A2 = A2 + factor2 * _lww * r ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = B2;
double __primary = (B2 + factor2 * _lww * r) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau2NMDA ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau2NMDA ) - __primary );
B2 += __primary;
} else {
B2 = B2 + factor2 * _lww * r ;
}
}
} }
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 1);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 2);
nrn_update_ion_pointer(_ca_sym, _ppvar, 4, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 5, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
A2 = A20;
B2 = B20;
{
double _ltp ;
Vwt = 0.0 ;
if ( tau1NMDA / tau2NMDA > .9999 ) {
tau1NMDA = .9999 * tau2NMDA ;
}
A2 = 0.0 ;
B2 = 0.0 ;
_ltp = ( tau1NMDA * tau2NMDA ) / ( tau2NMDA - tau1NMDA ) * log ( tau2NMDA / tau1NMDA ) ;
factor2 = - exp ( - _ltp / tau1NMDA ) + exp ( - _ltp / tau2NMDA ) ;
factor2 = 1.0 / factor2 ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_tsav = -1e20;
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
cao = _ion_cao;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
double _liTOT ;
mgblock = 1.0 / ( 1.0 + 0.28 * exp ( - 0.062 * v ) ) ;
sNMDA = B2 - A2 ;
if ( sNMDA > sNMDAmax ) {
sNMDA = sNMDAmax ;
}
iNMDA = sNMDA * ( v - e ) * mgblock * ( 1.0 - fracca ) ;
if ( fracca > 0.0 ) {
ica = sNMDA * ghkg ( _threadargscomma_ v , cai , cao , 2.0 ) * mgblock * fracca ;
}
g = sNMDA * mgblock ;
}
_current += iNMDA;
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
cao = _ion_cao;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dicadv += (_dica - ica)/.001 * 1.e2/ (_nd_area);
}
_g = (_g - _rhs)/.001;
_ion_ica += ica * 1.e2/ (_nd_area);
_g *= 1.e2/(_nd_area);
_rhs *= 1.e2/(_nd_area);
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
cao = _ion_cao;
{ state(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(A2) - _p; _dlist1[0] = &(DA2) - _p;
_slist1[1] = &(B2) - _p; _dlist1[1] = &(DB2) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/MyExp2SynNMDABB.mod";
static const char* nmodl_file_text =
": $Id: MyExp2SynNMDABB.mod,v 1.4 2010/12/13 21:28:02 samn Exp $ \n"
"NEURON {\n"
": THREADSAFE\n"
" POINT_PROCESS MyExp2SynNMDABB\n"
" RANGE e, i, iNMDA, s, sNMDA, r, tau1NMDA, tau2NMDA, Vwt, smax, sNMDAmax, g\n"
" NONSPECIFIC_CURRENT iNMDA\n"
" USEION ca READ cai,cao WRITE ica\n"
" GLOBAL fracca\n"
" RANGE ica\n"
"}\n"
"\n"
"UNITS {\n"
" (nA) = (nanoamp)\n"
" (mV) = (millivolt)\n"
" (uS) = (microsiemens)\n"
" FARADAY = (faraday) (coulomb)\n"
" R = (k-mole) (joule/degC)\n"
"}\n"
"\n"
"PARAMETER {\n"
" tau1NMDA = 15 (ms)\n"
" tau2NMDA = 150 (ms)\n"
" e = 0 (mV)\n"
" r = 1\n"
" smax = 1e9 (1)\n"
" sNMDAmax = 1e9 (1) \n"
" Vwt = 0 : weight for inputs coming in from vector\n"
" fracca = 0.13 : fraction of current that is ca ions; Srupuston &al 95\n"
"}\n"
"\n"
"ASSIGNED {\n"
" v (mV)\n"
" iNMDA (nA)\n"
" sNMDA (1)\n"
" mgblock (1)\n"
" factor2 (1) \n"
" ica (nA)\n"
" cai (mM)\n"
" cao (mM)\n"
" g (umho)\n"
"}\n"
"\n"
"STATE {\n"
" A2 (1)\n"
" B2 (1)\n"
"}\n"
"\n"
"INITIAL {\n"
" LOCAL tp\n"
" Vwt = 0 : testing\n"
" if (tau1NMDA/tau2NMDA > .9999) {\n"
" tau1NMDA = .9999*tau2NMDA\n"
" }\n"
" A2 = 0\n"
" B2 = 0 \n"
" tp = (tau1NMDA*tau2NMDA)/(tau2NMDA - tau1NMDA) * log(tau2NMDA/tau1NMDA)\n"
" factor2 = -exp(-tp/tau1NMDA) + exp(-tp/tau2NMDA)\n"
" factor2 = 1/factor2 \n"
"}\n"
"\n"
"BREAKPOINT {\n"
" LOCAL iTOT\n"
" SOLVE state METHOD cnexp\n"
" : Jahr Stevens 1990 J. Neurosci\n"
" mgblock = 1.0 / (1.0 + 0.28 * exp(-0.062(/mV) * v) )\n"
" sNMDA = B2 - A2\n"
" if (sNMDA>sNMDAmax) {sNMDA=sNMDAmax}: saturation\n"
"\n"
" :iTOT = sNMDA * (v - e) * mgblock \n"
" :iNMDA = iTOT * (1-fracca)\n"
" :ica = iTOT * fracca\n"
" \n"
" iNMDA = sNMDA * (v - e) * mgblock * (1-fracca)\n"
" if(fracca>0.0){ica = sNMDA * ghkg(v,cai,cao,2) * mgblock * fracca}\n"
" g = sNMDA * mgblock\n"
"}\n"
"\n"
":::INCLUDE \"ghk.inc\"\n"
":::realpath /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/ghk.inc\n"
"COMMENT\n"
" GHK function that returns effective driving force\n"
" Slope at low voltages is 1\n"
" z needs to be set as a PARAMETER\n"
"ENDCOMMENT\n"
"\n"
"FUNCTION ghkg(v(mV), ci(mM), co(mM), z) (mV) {\n"
" LOCAL xi, f, exi, fxi\n"
" f = R*(celsius+273.15)/(z*(1e-3)*FARADAY)\n"
" xi = v/f\n"
" exi = exp(xi)\n"
" if (fabs(xi) < 1e-4) {\n"
" fxi = 1 - xi/2\n"
" }else{\n"
" fxi = xi/(exi - 1)\n"
" }\n"
" ghkg = f*((ci/co)*exi - 1)*fxi\n"
"}\n"
"\n"
"FUNCTION ghk(v(mV), ci(mM), co(mM), z) (.001 coul/cm3) {\n"
" LOCAL xi, f, exi, fxi\n"
" f = R*(celsius+273.15)/(z*(1e-3)*FARADAY)\n"
" xi = v/f\n"
" exi = exp(xi)\n"
" if (fabs(xi) < 1e-4) {\n"
" fxi = 1 - xi/2\n"
" }else{\n"
" fxi = xi/(exi - 1)\n"
" }\n"
" ghk = (.001)*z*FARADAY*(ci*exi - co)*fxi\n"
"}\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
"\n"
":::end INCLUDE ghk.inc\n"
"\n"
"DERIVATIVE state {\n"
" A2' = -A2/tau1NMDA\n"
" B2' = -B2/tau2NMDA\n"
"}\n"
"\n"
"NET_RECEIVE(w (uS)) {LOCAL ww\n"
" ww=w\n"
" :printf(\"NMDA Spike: %g\\n\", t)\n"
" if(r>=0){ : if r>=0, g = NMDA*r\n"
" A2 = A2 + factor2*ww*r\n"
" B2 = B2 + factor2*ww*r\n"
" }\n"
"}\n"
;
#endif