/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__Nca
#define _nrn_initial _nrn_initial__Nca
#define nrn_cur _nrn_cur__Nca
#define _nrn_current _nrn_current__Nca
#define nrn_jacob _nrn_jacob__Nca
#define nrn_state _nrn_state__Nca
#define _net_receive _net_receive__Nca
#define rates rates__Nca
#define states states__Nca
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gmax _p[0]
#define i _p[1]
#define gca _p[2]
#define minf _p[3]
#define hinf _p[4]
#define mtau _p[5]
#define htau _p[6]
#define m _p[7]
#define h _p[8]
#define ica _p[9]
#define eca _p[10]
#define Dm _p[11]
#define Dh _p[12]
#define _g _p[13]
#define _ion_eca *_ppvar[0]._pval
#define _ion_ica *_ppvar[1]._pval
#define _ion_dicadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_efun(void);
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_Nca", _hoc_setdata,
"efun_Nca", _hoc_efun,
"rates_Nca", _hoc_rates,
0, 0
};
#define efun efun_Nca
extern double efun( double );
/* declare global and static user variables */
#define cai cai_Nca
double cai = 0;
#define cao cao_Nca
double cao = 2.5;
#define q10 q10_Nca
double q10 = 2.3;
#define tadj tadj_Nca
double tadj = 0;
#define temp temp_Nca
double temp = 23;
#define vshift vshift_Nca
double vshift = 0;
#define vmax vmax_Nca
double vmax = 100;
#define vmin vmin_Nca
double vmin = -120;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"vshift_Nca", "mV",
"cao_Nca", "mM",
"cai_Nca", "mM",
"temp_Nca", "degC",
"vmin_Nca", "mV",
"vmax_Nca", "mV",
"gmax_Nca", "pS/um2",
"i_Nca", "mA/cm2",
"gca_Nca", "pS/um2",
"mtau_Nca", "ms",
"htau_Nca", "ms",
0,0
};
static double delta_t = 1;
static double h0 = 0;
static double m0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"vshift_Nca", &vshift_Nca,
"cao_Nca", &cao_Nca,
"cai_Nca", &cai_Nca,
"temp_Nca", &temp_Nca,
"q10_Nca", &q10_Nca,
"vmin_Nca", &vmin_Nca,
"vmax_Nca", &vmax_Nca,
"tadj_Nca", &tadj_Nca,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"Nca",
"gmax_Nca",
0,
"i_Nca",
"gca_Nca",
"minf_Nca",
"hinf_Nca",
"mtau_Nca",
"htau_Nca",
0,
"m_Nca",
"h_Nca",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 14, _prop);
/*initialize range parameters*/
gmax = 0.1;
_prop->param = _p;
_prop->param_size = 14;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* eca */
_ppvar[1]._pval = &prop_ion->param[3]; /* ica */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _Nca_reg() {
int _vectorized = 0;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 14, 4);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 Nca /Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/Nca.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
#define FARADAY _nrnunit_FARADAY[_nrnunit_use_legacy_]
static double _nrnunit_FARADAY[2] = {0x1.78e555060882cp+16, 96485.3}; /* 96485.3321233100141 */
#define R _nrnunit_R[_nrnunit_use_legacy_]
static double _nrnunit_R[2] = {0x1.0a1013e8990bep+3, 8.3145}; /* 8.3144626181532395 */
#define PI _nrnunit_PI[_nrnunit_use_legacy_]
static double _nrnunit_PI[2] = {0x1.921fb54442d18p+1, 3.14159}; /* 3.14159265358979312 */
static double _zmexp , _zhexp ;
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rates(double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 () {_reset=0;
{
rates ( _threadargscomma_ v + vshift ) ;
Dm = ( minf - m ) / mtau ;
Dh = ( hinf - h ) / htau ;
}
return _reset;
}
static int _ode_matsol1 () {
rates ( _threadargscomma_ v + vshift ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / htau )) ;
return 0;
}
/*END CVODE*/
static int states () {_reset=0;
{
rates ( _threadargscomma_ v + vshift ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0 ) ) ) / mtau ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0 ) ) ) / htau ) - h) ;
}
return 0;
}
static int rates ( double _lvm ) {
double _la , _lb ;
_la = 0.055 * ( - 27.0 - _lvm ) / ( exp ( ( - 27.0 - _lvm ) / 3.8 ) - 1.0 ) ;
_lb = 0.94 * exp ( ( - 75.0 - _lvm ) / 17.0 ) ;
mtau = 1.0 / tadj / ( _la + _lb ) ;
minf = _la / ( _la + _lb ) ;
_la = 0.000457 * exp ( ( - 13.0 - _lvm ) / 50.0 ) ;
_lb = 0.0065 / ( exp ( ( - _lvm - 15.0 ) / 28.0 ) + 1.0 ) ;
htau = 1.0 / tadj / ( _la + _lb ) ;
hinf = _la / ( _la + _lb ) ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
double efun ( double _lz ) {
double _lefun;
if ( fabs ( _lz ) < 1e-4 ) {
_lefun = 1.0 - _lz / 2.0 ;
}
else {
_lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
}
return _lefun;
}
static void _hoc_efun(void) {
double _r;
_r = efun ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
eca = _ion_eca;
_ode_spec1 ();
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 ();
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
eca = _ion_eca;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
m = m0;
{
tadj = pow( q10 , ( ( celsius - temp ) / 10.0 ) ) ;
rates ( _threadargscomma_ v + vshift ) ;
m = minf ;
h = hinf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
eca = _ion_eca;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
gca = tadj * gmax * m * m * h ;
i = ( 1e-4 ) * gca * ( v - eca ) ;
ica = i ;
}
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
eca = _ion_eca;
_g = _nrn_current(_v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
eca = _ion_eca;
{ error = states();
if(error){fprintf(stderr,"at line 77 in file Nca.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "/Users/salvadord/Documents/ISB/Models/M1_NetPyNE_CellReports_2023/sim/mod/Nca.mod";
static const char* nmodl_file_text =
": $Id: Nca.mod,v 1.7 2004/06/08 21:07:12 billl Exp $\n"
"\n"
"COMMENT\n"
"26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.\n"
"Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal\n"
"\n"
"ca.mod\n"
"Uses fixed eca instead of GHK eqn\n"
"\n"
"HVA Ca current\n"
"Based on Reuveni, Friedman, Amitai and Gutnick (1993) J. Neurosci. 13:\n"
"4609-4621.\n"
"\n"
"Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu\n"
"\n"
"ENDCOMMENT\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX Nca\n"
" USEION ca READ eca WRITE ica\n"
" RANGE i, m, h, gca, gmax\n"
" RANGE minf, hinf, mtau, htau\n"
" GLOBAL q10, temp, tadj, vmin, vmax, vshift\n"
"}\n"
"\n"
"PARAMETER {\n"
" gmax = 0.1 (pS/um2) : 0.12 mho/cm2\n"
" vshift = 0 (mV) : voltage shift (affects all)\n"
"\n"
" cao = 2.5 (mM) : external ca concentration\n"
" cai (mM)\n"
" \n"
" temp = 23 (degC) : original temp \n"
" q10 = 2.3 : temperature sensitivity\n"
"\n"
" v (mV)\n"
" dt (ms)\n"
" celsius (degC)\n"
" vmin = -120 (mV)\n"
" vmax = 100 (mV)\n"
"}\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
" FARADAY = (faraday) (coulomb)\n"
" R = (k-mole) (joule/degC)\n"
" PI = (pi) (1)\n"
"} \n"
"\n"
"ASSIGNED {\n"
" i (mA/cm2)\n"
" ica (mA/cm2)\n"
" gca (pS/um2)\n"
" eca (mV)\n"
" minf hinf\n"
" mtau (ms) htau (ms)\n"
" tadj\n"
"}\n"
"\n"
"\n"
"STATE { m h }\n"
"\n"
"INITIAL { \n"
" tadj = q10^((celsius - temp)/10)\n"
" rates(v+vshift)\n"
" m = minf\n"
" h = hinf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" gca = tadj*gmax*m*m*h\n"
" i = (1e-4) * gca * (v - eca)\n"
" ica = i\n"
"} \n"
"\n"
"LOCAL mexp, hexp\n"
"\n"
":PROCEDURE states() {\n"
" : rates(v+vshift) \n"
" : m = m + mexp*(minf-m)\n"
" : h = h + hexp*(hinf-h)\n"
" : VERBATIM\n"
" : return 0;\n"
" : ENDVERBATIM\n"
" :}\n"
"\n"
" DERIVATIVE states {\n"
" rates(v+vshift) \n"
" m' = (minf-m)/mtau\n"
" h' = (hinf-h)/htau\n"
" }\n"
"\n"
" PROCEDURE rates(vm) { \n"
" LOCAL a, b\n"
"\n"
" a = 0.055*(-27 - vm)/(exp((-27-vm)/3.8) - 1)\n"
" b = 0.94*exp((-75-vm)/17)\n"
" \n"
" mtau = 1/tadj/(a+b)\n"
" minf = a/(a+b)\n"
"\n"
" :\"h\" inactivation \n"
"\n"
" a = 0.000457*exp((-13-vm)/50)\n"
" b = 0.0065/(exp((-vm-15)/28) + 1)\n"
"\n"
" htau = 1/tadj/(a+b)\n"
" hinf = a/(a+b)\n"
" }\n"
"\n"
" FUNCTION efun(z) {\n"
" if (fabs(z) < 1e-4) {\n"
" efun = 1 - z/2\n"
" }else{\n"
" efun = z/(exp(z) - 1)\n"
" }\n"
" }\n"
;
#endif